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Preface

Practitioners in manufacturing and retail enterprises in the fashion industry, ranging
from senior to front line management, constantly face complex and critical decisions.
These decisions include site selection for manufacturing plant, production planning
and scheduling, marker planning, cut order planning, production line balancing
control, sales forecasting, recommendations about fashion trends and so on.
Traditionally, such decisions depended on their experience and judgement. However,
as the market has shifted to short production runs to meet rapidly changing demand,
and costs have been squeezed in favour of just-in-time production methods, these
decisions have become more complex. At the same time, apparel processing has
become more automated and integrated, allowing greater control of the supply chain.

Recently, artificial intelligence (AI) techniques have received increasing attention
from both practitioners and researchers in the apparel industry, and have been utilized
to handle a variety of decision-making processes in apparel supply chain operations.
A number of Al techniques, such as neural networks, genetic algorithms, fuzzy logic
and evolutionary strategies, have been applied successfully. The ten chapters of this
book provide a detailed coverage of the fundamentals and application of various
artificial intelligence techniques to assist decision makers in tackling key problems in
the apparel supply chain. Chapter 1 discusses a range of key problems faced by apparel
enterprises in apparel supply chain operations. Chapter 2 introduces the fundamentals
of the main Al techniques which have been used in solving decision-making problems.
The remaining eight chapters show how key problems in the apparel supply chain can
be solved and solutions optimized by use of Al techniques.

The authors wish to express their sincere thanks to K.F. Au, S.F. Chan, J.T. Fan,
W.H. Ip, C.K. Kwong, P.Y. Mok, X.X. Wang and X.H. Zeng for their contributions of
material to individual chapters.

Dr Calvin Wong

Associate Professor

Institute of Textiles and Clothing

The Hong Kong Polytechnic University
Hunghom, Kowloon

Hong Kong

China

E-mail: calvin.wong@polyu.edu.hk
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Fundamentals of artificial
intelligence techniques for apparel
management applications

Z. X. GUO, Sichuan University, China and W. K. WONG,
The Hong Kong Polytechnic University, China

DOI: 10.1533/9780857097842.13

Abstract: The fundamentals of artificial intelligence (AI) techniques are
introduced briefly in this chapter. The definition, significance and classification
of Al techniques are presented first. Some representative Al techniques,
especially those which have been used in solving decision-making problems

in the apparel supply chain operations, are then introduced to help readers
understand Al techniques used in subsequent chapters. These techniques
include rule-based expert systems, evolutionary optimization techniques,
feedforward neural networks and fuzzy logic. Their relevant fundamentals

are introduced, including their origins, fundamental characteristics, possible
applications and the procedures of implementation.

Key words: expert system, evolutionary computation, neural network,
fuzzy logic.

21 Artificial intelligence (Al) techniques:
a brief overview

Artificial intelligence (Al) is a multidisciplinary subject which has attracted
researchers from a variety of fields, such as computing, psychology, neuroscience,
mathematics and linguistics. The popularity of Al techniques has been increasing
rapidly in recent years; they currently cover a large variety of subfields in science
and engineering, from general-purpose areas, such as decision-making, perception
and logical reasoning, to specific tasks, such as robot control and disease diagnosis.
Al techniques have received increasing attention from participants and researchers
in the fashion industry over the last two decades, and have been utilized to handle
a variety of decision-making processes in fashion supply chain operations, such as
plant location selection, sewing assembly line balancing, production scheduling,
marker making, sales forecasting and fashion recommendation.

2.1.1 Definition of Al

There is no precise definition of Al. Researchers from different fields define Al
differently. Researchers from computer science are usually interested in the
creation of intelligent systems and programs capable of reproducing human-like

13
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14 Optimizing decision making

behavior, such as understanding languages and learning from experience. On
the other hand, engineering researchers place more emphasis on using Al as a
problem solver.

Russell and Norvig (1994) reviewed the definitions of Al and classified
them into four categories, including systems that (1) think like humans; (2) act
like humans; (3) think rationally; and (4) act rationally. According to these
definitions, Al techniques have the abilities (1) to artificially simulate the human
brain; (2) to act intelligently as a human; (3) to actively learn and adapt as a
human; (4) to process languages and symbols; and (5) to perform general
intelligent action.

In this book, Al is defined as the study of how computer programs (systems)
simulate intelligent processes, including learning, reasoning, associative memory,
and understanding symbolic information in context.

21.2 Uses of Al

Problem-solving techniques can be roughly classified as either traditional or Al It
is necessary to develop Al techniques because traditional techniques do not
always solve scientific problems effectively due to ongoing scientific exploration.
For example, they are ineffective in solving optimization problems with high
problem complexity or large solution space.

Song et al. (1996) pointed out that ‘the engineering goal of Al is to solve real-
world problems using Al as a tool to simulate human problem-solving capabilities’.
Al techniques promise effective solutions to various problems due to their abilities
to emulate intelligent processes, as opposed to traditional techniques. Al is also an
effective supplement to natural intelligence because it builds intelligence into
computer systems. The systems can effectively execute particular tasks, such as
robot control, which can reduce human labor and mistakes.

Al techniques have the capability to tackle a wide range of real-world problems,
including modeling, classification, optimization and forecasting. These problems
involve a large variety of application domains, including manufacturing and
service industries, business and finance, computer science and telecommunications.
Some real-world problems are very complex and intractable, such as production
order planning, sewing assembly line balancing, and fashion sales forecasting.

2.1.3 Classification of Al techniques

Al techniques can be roughly divided into two categories: symbolic Al and
computational intelligence. The former focuses on development of knowledge-
based systems while the latter focuses on development of a set of nature-inspired
computational approaches. The latter primarily includes evolutionary
computations, artificial neural networks and fuzzy logic systems. A brief
introduction to these techniques begins on the next page.

© Woodhead Publishing Limited, 2013



Artificial intelligence techniques for apparel management 15

Knowledge-based systems

Knowledge consists of data and information, which are indispensable for drawing
inferences and reaching conclusions. It can be implicit (e.g. practical skill or
expertise) or explicit (e.g. theoretical understanding of a domain or a subject).
Once knowledge is organized and represented in such a way that it can be
identified by computer programs, it often generates decision-making solutions as
good as or even better than human experts. Knowledge-based systems were
developed on the basis of this concept.

Knowledge-based systems are tools for establishing applications that make
logical inferences and decisions from their stored knowledge of the problem
domain (Hembry, 1990), aiming at supporting human decision-making, learning
and action. To construct a knowledge-based system, one needs to focus on the
acquisition, accumulation, representation and use of knowledge specific to a
particular task. From the perspective of the end user, a knowledge-based system
consists of three core components:

e Knowledge base: contains highly specialized and problem-related knowledge,
such as rules, frames, cases, facts and heuristics.

¢ Knowledge inference mechanism: provides solution recommendations for
decision makers and problem solvers.

e User interface: bridges the gap between end users and the system, and entices
more people to use the system with its user-friendliness.

There are two types of knowledge-based systems, expert systems and case-based
reasoning systems, which have been widely applied in various fields, such as
fashion matching recommendation, software engineering, computer vision,
computer-aided design and production management. We will introduce the most
popular knowledge-based system, the rule-based expert system, in Section 2.2.

Evolutionary computation

Evolutionary computation is an umbrella term for a range of evolutionary
optimization techniques mainly inspired by optimum-seeking mechanisms from
the real world, such as natural selection and genetic inheritance, which simulate
evolution processes on a computer to iteratively improve the performance of
solutions until an optimal (or feasible at least) solution is obtained.

Evolutionary optimization techniques make few or no assumptions about the
problem being optimized. They are powerful in addressing complex optimization
problems with large solution spaces and randomness, when traditional techniques
fail to do so. These techniques are one of the fastest-growing areas of computer
science and engineering, and are being increasingly widely applied to a variety of
problems, ranging from practical applications in industry to leading-edge scientific
research, such as large-scale production scheduling and stochastic combinatorial
optimization.

© Woodhead Publishing Limited, 2013



16 Optimizing decision making

Broadly speaking, evolutionary computation includes evolutionary algorithms,
such as genetic algorithms and evolution strategies, and swarm intelligence,
such as ant colony algorithms, particle swarm optimization, artificial
immune systems and harmony search. We will introduce several representative
evolutionary optimization techniques in the field of evolutionary computation in
Section 2.3.

Neural network

An artificial neural network, usually called neural network (NN), is a computational
model inspired by research into biological neural networks. An NN consists of a
number of interconnected neurons (or nodes), which are analogous to biological
neurons in the brain, according to some patterns of connectivity. In most cases, an
NN is an adaptive system, which discovers the relationships between inputs and
associated outputs by adjusting the network setting in terms of data patterns of
training samples.

The history of NNs can be traced back to 1943, when physiologists
McCulloch and Pitts established the model of a neuron as a binary linear
threshold unit (McCulloch and Pitts, 1943). One of the most well-known features
of NN is that they can be used as universal approximators (Scarselli and Tsoi,
1998; Zhang et al., 2012). In view of this feature, NNs have been widely applied
to a variety of related problems, such as forecasting, modeling, classification and
clustering.

To construct an NN, one needs to decide the following three issues:

e Network architecture, including the number of input neurons, the number of
hidden layers and hidden neurons, the number of output neurons, and the
interconnections among these neurons.

e Activation function, which determines the relationship between input and
output of a neuron.

e Learning algorithm, which determines the connection weights among network
neurons.

According to different settings of the above issues, there exist many types of NN,
such as feedforward NNs (FNNs), recurrent NNs and random NNs. We will
introduce FNNs in Section 2.4.

Fuzzy logic

The term ‘fuzzy logic’ emerged in the development of the fuzzy set theory by
Professor Lofti Zadeh (1965) at the University of California. Fuzzy logic has two
distinct meanings. In a narrow sense, it is a generalization of various many-value
logics that have been investigated in the area of mathematical logic. In a broad
sense, fuzzy logic serves mainly as a system of concepts, principles, and methods
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for handling modes of reasoning with imprecise information. The purpose of
researching fuzzy logic in the narrow sense is to provide fuzzy logic in the broad
sense with a sound foundation.

Fuzzy logic is often referred to as ‘reasoning with uncertainty’, and provides a
mechanism to handle vague or imprecise data in human reasoning and
communication so that precise deductions can be made. Natural languages have a
position of centrality in human reasoning and communication, which are
pervasively imprecise and involve various vague linguistic terms. Vagueness of a
linguistic term is a kind of uncertainty caused by imprecise meaning instead of
information deficiency. Fuzzy logic provides the capability of expressing
imprecision in vague terms, which allows for approximate values and inferences
as well as fuzzy or incompletely defined data as opposed to depending on crisp
data, and also provides approximate solutions to problems that are hard for non-
fuzzy methods to solve.

Fuzzy logic has achieved great success in a variety of applications over the last
three decades. The most well-known applications have been in the area of control,
ranging from simple control systems in consumer products (e.g. intelligent
washing machines, air conditioners) to highly challenging control systems (e.g.
voice-controlled robot helicopters). In addition, successful applications of fuzzy
logic can also be found in manufacturing, transportation, image processing and
computer vision, expert systems, decision-making, biological science and many
other engineering and science areas.

2.2 Rule-based expert systems

Expert systems are computer programs that perform sophisticated decision
tasks by emulating the decision-making abilities of human experts, and are
built from explicit pieces of knowledge extracted from human experts. The
extracted knowledge is a mixture of factual knowledge and heuristic knowledge,
comprising intuition, judgement and logical inferences. Different representations
have been proposed to represent knowledge effectively in an expert system, such
as rules, semantics and frames, among which rules are the most commonly used.
Expert systems using rules to represent knowledge are called rule-based expert
systems.

2.2.1 Structure of rule-based expert systems

A general rule-based expert system consists of six components: knowledge
base, knowledge acquisition facility, database, inference engine, explanation
facility and user interface. A functional integration of these components
is shown in Fig. 2.1. The functions of these components are described on the
next page.

© Woodhead Publishing Limited, 2013



18

Optimizing decision making

Knowledge base Database

A
v

Inference engine

A
v

A A

v v

Knowledge Explanation
acquisition facility facility

A

v

User interface

i

2.1 Architecture of a rule-based expert system.

Knowledge base: A knowledge base stores knowledge, such as problem-
solving rules and intuition, which a human expert might use in solving
problems in a given problem domain. A knowledge base can combine the
knowledge of multiple human experts. In a rule-based expert system,
knowledge is represented as a set of I[F-THEN rules. A rule is a conditional
statement that links given conditions to conclusions or actions. Once the
condition part of a rule is satisfied, the rule is fired and the conclusion part is
executed.

Knowledge acquisition facility: This component provides a convenient and
efficient means for capturing all IF-THEN rules and stores them into the
knowledge base. In some expert systems, it also provides an interactive way
to enable a domain expert to input knowledge directly in runtime.

Database: This component stores a set of facts which are used to match the
IF-THEN rules stored in the knowledge base.

Inference engine: This component carries out reasoning processes whereby
the expert system reaches a solution, and links rules in the knowledge base
with facts in the database. An inference engine decides which rules are
satisfied, prioritizes them and executes those of the highest priority.
Explanation facility: It enables a user to understand how the expert system
arrives at its conclusions. Keeping track of the fired rules, the component
presents a trace of reasoning that leads to a certain conclusion.

User interface: It provides a mechanism to support communication between
the user seeking a solution and the system. It is determined at the time of
system design.
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2.2.2 Rule-based knowledge representation

In a rule-based expert system, rules provide a formal way of representing expert
knowledge, which can represent relations, recommendations, directives, strategies
and heuristics (Durkin, 1994). A rule consists of two parts: the IF part, called the
antecedent (premise or condition), and the THEN part, called the consequent
(conclusion). The basic syntax of a rule is:

IF <antecedent>
THEN <consequent>

The antecedent and consequent of a rule consist of two parts: an object and its
value, which are linked by an operator. The operator identifies an object
and assigns a value. Operators, such as is, are, is not and are not, are usually
used to assign a symbolic value to a linguistic term. Mathematical operators
can also be used to define an object as numerical and assign it a numerical value.
For example,

IF the tardiness of materials >10 days
THEN production rescheduling is required.

A rule can have multiple antecedents joined by logic operators AND
(conjunction), or OR (disjunction), and multiple consequents joined by AND.
For example,

IF the shirt color is white AND the pants are black
THEN the mix-and-match change is not required.

IF the tardiness of materials >5 days
THEN production rescheduling is required
AND penalty weight =100%.

2.2.3 Inference techniques

In a rule-based expert system, the inference engine models and performs
the reasoning of a human expert by using a collection of IF-THEN rules.
To achieve this, an inference technique is used to determine when rules
should be fired and what solution can be finally reached. The inference technique
compares each IF-THEN rule in the knowledge base with facts stored in
the database. When the condition (IF) part of a rule matches a fact, the rule is
fired and its action (THEN) part is executed. Inference techniques aim at
forming several rules in succession to construct a logical sequence of deduction,
which is known as chaining. Two types of inference technique are commonly
used, including forward chaining and backward chaining, which are introduced
on the next page.
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Forward chaining

Forward chaining is a technique for gathering information and then inferring from
it whatever can be inferred. The steps involved in forward chaining are described
as follows.

e Step 1: Obtain problem information from the user and put it in the database.

e Step 2: Scan the rules in the knowledge base in pre-specified order to
search for one whose antecedent (condition) matches the facts in the
database.

e Step 3: Check if the rule is found in Step 2. If so, the rule is fired and the rule’s
conclusion part is added to the database.

e Step 4: Go to Step 2 to search for new matches until a solution is found or no
further rules can be found.

It is clear that the order in which rules are fired is determined by the facts available
to the inference engine at that stage. Thus, forward chaining is data-driven
reasoning, which works well when a problem naturally begins by gathering
information and then examining what can be deduced from it. However, in
forward chaining, many rules may be fired even though they have nothing to do
with the expected goal because forward chaining has no effective mechanism of
recognizing and selecting which rules should not be used.

Backward chaining

Backward chaining is the opposite of forward chaining. It is goal-driven reasoning.
In backward chaining, the rule-based expert system has a goal (a hypothetical
solution) and the inference technique needs to find evidence to prove it. The steps
involved in backward chaining are described as follows.

e Step 1: Search the rules in the knowledge base and look for one (or more) that
contains the goal in its THEN part. This type of rule is called goal rule.

e Step 2: Check if the goal rule’s IF (antecedent) part is listed in the database. If
s0, go to Step 5; otherwise, go to Step 3.

e Step 3: Set the antecedent not listed in the database as a new goal (also called
subgoal) for proof.

e Step 4: Go to Step 1 until the system finds an antecedent that is not supported
by any rule.

e Step 5: The rule is fired and the original goal is proved. The iterative process
stops.

In backward chaining, the reasoning keeps the focus on the goal because it starts
at the final step of a possibly long chain of reasoning. Backward chaining works
well when the problem naturally starts by informing a hypothesis and examining
if it can be proven.
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In forward chaining and backward chaining, it is possible that no effective
chaining can be formed to infer the original goal, which means that existing
information (facts and rules) is insufficient and more facts or rules need to be
provided. In addition, forward chaining and backward chaining can be combined
to perform an inference task, which is usually used in applications where different
tasks are naturally performed in either a data-driven or a goal-driven manner.

2.3 Evolutionary optimization techniques

The processes of optimum-seeking have been remarkably successful in lots of
real-world phenomena, such as human evolution, food-seeking of ant colonies,
and improvisation of musicians. By using stochastic heuristic individual searches
and generation processes, these phenomena work toward a perfect individual to
fill a particular environmental niche. It is naturally expected that evolutionary
optimization processes can be created by modeling the behaviors of these
phenomena. The evolutionary optimization techniques were thus developed to
perform this function, which mimics the optimum-seeking processes of these
phenomena in a computer program.

This section will introduce several representative evolutionary optimization
techniques, including genetic algorithms (GA), evolution strategies (ES) and
harmony searches (HS).

2.3.1 Optimum-seeking mechanism of evolutionary
optimization techniques

Evolutionary optimization techniques have a similar optimum-seeking mechanism
although they are inspired by different real-world phenomena. A general flowchart
of evolutionary optimization techniques is shown in Fig. 2.2. The procedures
involved are described as follows.

1. Generate initial individual population: Each solution individual is usually
generated randomly based on pre-specified solution representation and
population size.

2. Evaluate solution individual: Evaluate the performance (fitness) of solutions
newly generated on the basis of a given performance measure.

3. Check stopping criteria: Check if stopping criteria are met. If so, return the
best individual as the optimal solution; otherwise, go to the next loop for
generating new individuals.

4. Generate new individuals: Each new individual is generated based on one or
more individuals in the current population. Different evolutionary optimization
techniques generate new individuals.

5. Form next individual population: A specified number of individuals are
selected from the newly generated individuals and the current population to
form the next population (also called offspring population).
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2.2 General flowchart of evolutionary optimization techniques.

To design and develop an evolutionary optimization technique for tackling a
problem, one needs to make a variety of design decisions, such as:

e choosing a particular paradigm that is suited for the problem

e choosing an appropriate solution representation and population size

e choosing an appropriate method to generate new individuals

¢ choosing an appropriate mechanism to form the next population

e choosing an appropriate performance measure to evaluate individuals
e choosing an appropriate stopping criterion.

2.3.2 Brief introduction to genetic algorithm

The GA is the most popular technique in the family of evolutionary computation,
which is inspired by the principles of genetics and natural selection — Darwin’s
‘survival of the fittest’ theory. The origin of the GA can be traced back to the
early 1950s, when several biologists used computer programs to perform
simulations of biological systems (Goldberg, 1989). However, the popularization
of GAs is accredited to the work (Holland, 1975) done in the late 1960s and early
1970s under the direction of John Holland.

The optimum-seeking mechanism of a GA is analogous to the biological
evolutionary process. The GA operates on a population of chromosomes (also
called individuals). Each chromosome represents a feasible solution to the
problem investigated. Different representations have been developed to represent
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chromosomes, such as real-coded representation and order-based representation.
According to evolutionary theories, only the chromosomes adapting to the
environment in the parental population are likely to survive and generate offspring
by transmitting their biological heredity to the offspring population (next
population). The offspring chromosomes are generated by using a set of
biologically inspired genetic operators, including selection, crossover and
mutation. The offspring are supposed to inherit excellent genes from their parents
so that the average quality of solutions is better than in previous generations.
Figure 2.3 shows the flowchart of a canonical GA. GAs work iteratively. Each
single iteration is called a generation. In each generation, the fitness of
each chromosome is evaluated and determined by the fitness function. When the
fitness function value of a chromosome is larger, the chromosome becomes
fitter, indicating that the chromosome has a bigger opportunity to survive in the
next generation. This evolution process is repeated until some stopping criteria
are met. Selection operators determine which chromosomes are selected for
mating from the current generation. Crossover and mutation operators are
employed to create offspring chromosomes based on chromosomes selected by
selection operators. The entire set of generations is called a run. At the end of a
run, one or more chromosomes with the highest fitness values are taken as optimal

solutions.
( Start > ( End >

v

Generate individual
population Bd

v

Evaluate chromosomes in
current population Form offspring population

¥ .
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Obtain best chromosome
as optimal solution
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chromosomes
Selection Mutation
¢ A
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2.3 Flowchart of a canonical genetic algorithm (GA).
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2.3.3 Brief introduction to evolution strategy

The evolutionary strategy (ES) is another intelligent optimization technique of
mimicking natural evolution, which was invented by Ingo Rechenberg and Hans-
Paul Schwefel in the early 1960s (Rochenberg, 1965; Schwefel, 1975) to solve
parameter optimization problems.

The general flowchart of an ES is shown in Fig. 2.4, which is very similar to that
ofa GA. The only difference is that an ES uses only one genetic operator (mutation).
The earliest ES model, termed as (1+1)-ES, was based on a population having one
individual (chromosome) only. Generally ESs are based on the population of u
(u > 1) individuals, which makes them less prone to getting stuck in the local optima
(Hansen and Kern, 2004). In these ESs, a new (offspring) individual is generated by
randomly selecting a parental individual to undergo mutation. In each generation, A
offspring are generated. ESs can be classified into (u,4)-ES and (u+ A)-ES. The two
types use different strategies to generate populations of the next offspring generation:

(u,A)-ES: The next population consists of u best individuals from the population
of A newly generated offspring.

(u+A)-ES: The next population consists of u best individuals from u parents and
A newly generated offspring.

The ES is modified to handle combinatorial optimization problems, although it
was initially developed for continuous optimization. In addition, some researchers
extended the ES to recombination, which leads to more general notation (u/p,A)
-ES. p refers to the number of parents involved in the generation of one offspring
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2.4 Flowchart of a canonical evolution strategy (ES).
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(mixing number). For p=1, we have ES cases (u,A) and (u+A) without
recombination. For p>1, we have ES cases with recombination. Like GAs facing
different optimization problems, different individual representations and
evolutionary operators in ESs are required to adapt themselves to these problems.

2.3.4 Brief introduction to harmony search

Some evolutionary optimization techniques do not originate in natural evolution.
The HS is a relatively new evolutionary optimization algorithm developed by
Geem et al. (2001), which is inspired by musicians’ improvisation of their
instruments’ pitches to search for perfect harmony.

The HS generates a new individual (solution vector) by considering all existing
vectors, whereas traditional evolutionary algorithms (such as ES and GA) only
consider one or two parental individuals. This distinct feature of the HS increases
the algorithm’s flexibility so that it can generate better solutions than conventional
mathematical methods or GA- and ES-based approaches (Lee and Geem, 2004;
Mahdavi et al., 2007).

The flowchart of an HS is shown in Fig. 2.5. The initial harmony memory is
generated randomly, in which each harmony (individual, solution vector) v
represents a distinct feasible solution of all decision variables. That is, v=[v, v,,

.» v,]. The performance (fitness) of each harmony is evaluated and determined
by the fitness function. When the fitness function of a harmony is larger, the
performance of the harmony is better. This evolution process is repeated until

< Start > ( End >
: f

Generate initial harmony

memory >

v

Evaluate individuals in
current harmony memory

Obtain the best harmony
as the optimal solution

Update the harmony
memory

Yes f
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A
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2.5 Flowchart of a harmony search (HS).
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some stopping criteria are met. After the fitness values of all individuals in the
population are calculated, two HS procedures, memory consideration and pitch
adjustment, are used to improvise a new harmony (or generate a new solution
vector). Generating a new harmony is called improvisation.

2.4 Feedforward neural networks (FNNs)

Feedforward neural networks (FNNs) are the most common type of NN, which
have been used in a wide variety of real-world applications, including pattern
recognition and classification, system identification and control, and forecasting.
Applications of FNNs in fashion supply chain operations involve prediction,
classification and model identification (Guo et al., 2011).

2.41 Brief introduction to FNN

FNNSs are a type of NN in which connections among units do not travel in a loop
but in a single directed path. Typically, an FNN consists of an input layer of
neurons (nodes), one or more hidden layers of neurons, and an output layer
of neurons. The input layer and output layer form bookends for hidden layers of
neurons. Signals are propagated from the input layer to hidden neurons and then
onto output neurons, which output responses of the network to outside users. That
is, signals only move in a forward direction on a layer-by-layer basis. Figure 2.6
shows a typical FNN with one hidden layer.
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2.6 Feedforward neural network (FNN) with one hidden layer.
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2.7 Diagram of a neuron.

In the NN, a neuron is a mathematical function conceived as abstraction of
biological neurons. Figure 2.7 shows a typical neuron. A neuron receives signals
from its inputs x, (i=1, ..., n) (representing one or more dendrites) and an

n

externally applied bias b. The weighted summation X (X =Exl.wi +b) of these
i=1
input signals is then passed through activation function f(X) to generate output

signal Y (representing a biological neuron’s axon). It is clear that
Y= f(X)= f(Ex,-w,-].
i=0

In this equation, the effect of the bias is considered by: (1) adding a new input
signal fixed at + 1, and (2) adding a new synaptic weight equal to bias b. That is,
x,= 1, w,= b. The input signal x(i =1, . . ., n) can be raw data or outputs of other
neurons. Output signal Y can be either a final solution to the problem or an input
to other neurons. It should be noted that, for simplicity, the NN shown in Fig. 2.6
does not include bias signals, which is feasible in practical applications.

Various FNNs have been presented, including backpropagation networks,
extreme learning machine networks, learning vector quantization networks, self-
organizing map networks and radial basis function networks. These FNNs are
capable of approximating generic classes of functions (Scarselli and Tsoi, 1998;
Zhang et al., 2012) and are constructed in terms of different settings from the
following three perspectives.

Network architecture: In traditional FNNs, neurons are by default fully
connected between neighboring layers (Fig. 2.6) in order to simplify the network
design, although fully connected NNs are biologically unrealistic (Wong et al.,
2010). To simplify the network structure and improve the generalization capability
of FNNs, some partially connected FNNs have been developed (Wong et al.,
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2010; Elizondo and Fiesler, 1997). However, fully connected FNNs are still
dominant because designing partially connected FNNs is complicated and usually
data-dependent. In FNNs, backpropagation networks can have more than one
hidden layer, while ELM networks and radial basis function networks have only
one hidden layer each.

Activation function: Every neuron has its own activation function and
generally only two activation functions are used in a particular NN. Neurons in
the input layer use the identity function as the activation function. That is, the
output of an input neuron equals its input. The activation functions of hidden and
output layers can be differentiable and non-linear in theory. Several ‘well-behaved’
(bounded, monotonically increasing and differentiable) activation functions
are commonly used in practice, including: (1) the sigmoid function f(X) =
(1 + exp(—=X))"; (2) the hyperbolic tangent function f(X) = (exp(X) — exp(—X))/

(exp(X) + exp(—X)); (3) the sine or cosine function f(X) = sin(X) or f(X) = cos(X);
(4) the linear function f(X) = X; (5) the radial basis function. Among them, the

sigmoid function is the most popular, while the radial basis function is only used
for radial basis function networks.

Learning algorithm: Traditionally, NN learning is an algorithmic procedure
whereby parameters (such as weights) of an NN are estimated. Within this framework,
two categories of learning are considered: supervised learning and unsupervised
learning. Learning can be ‘supervised’ since an NN should fulfill a function known
insome or even all points: a ‘teacher’ provides sample data of inputs and corresponding
outputs of a task that an NN should perform. The most popular supervised learning
algorithm is the backpropagation algorithm. In contrast to supervised learning,
unsupervised learning does not require a ‘teacher’. During the learning process, an
NN receives a number of input patterns, discovers significant features in these
patterns and learns how to classify input data into categories appropriately. The most
popular unsupervised learning algorithm is the self-organizing map.

2.4.2 Backpropagation network

The backpropagation (BP) network is the most commonly used FNN. Its structure
is the same as that shown in Fig. 2.6 except that it can contain more than one
hidden layer. A BP algorithm is used for BP network learning, which is described
in detail below.

Given a desired output response vectord = [d,,d,, . . ., dp, ..., d,], the learning
algorithm performs an optimization process to find optimal connection weights so
that each output error e , defined as the error between the desired output d, and the
output of network 0, is minimized. That is, miI} E(w)
where ek

E(w)=l S [d, —op]2 L ef)._
2 2

P
p=1 p=
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Consider an FNN with L—1 (L>2) hidden layers. Let neuron(i,[) be the ith neuron
in layer /, and w be the connection weight between neuron( j,[) and neuron(i,l —
1). I denotes the ith mput of neuron(j,), which is equal to the output o' 'of
neuron(z [—=1)(ie. 11 = 0 ™). The BP algorithm can be implemented on the bas1s
of the following steps

e Step 1: Sctalearningrate n (0<n<1).

e Step 2: Set all connection weights w/.Ii(O) to random numbers uniformly
distributed inside a small range A feasible empirical range (Haykin, 1994) is
(-2.4/N}, L+, 4/N; "), where N is the total number of inputs of neuron( 7,1).

o Step 3: Select a random 1nput pattern with its corresponding target output.

e Step 4: Assign to each neuron in the input layer the appropriate value in the
input vector. Feed this input to all neurons in the first hidden layer.

e Step 5: For neuron( j,l) in hidden and output layers (i.e. 2 </< L), calculate its
total input netjl,

net’ —E
Ji jl

where 1 equals 1, w , €quals the bias b applied to neuron( j,[). The output of
this neuron is f(net' ) j( ) is the actlvatlon function that can be any function
with bounded derlvatlves

e Step 6: Calculate the error signal at output neuron neuron(k,L),

OE _ OE 9o,

onet ,f 60 anetA,L

8 = -

=(dkL —olf)'f'(netf).

e Step 7: Calculate the error signal for each neuron neuron( j,[) in hidden layers
@2=<isL-1),

(S;_=——]=__ —f(net )E(SH] 1+1-

ao ant

* Step 8: Update the weights for all layers wi(n + 1) = wi(n) + 191,
Step 9: Continue at Step 3. '

2.4.3 Extreme learning machine network

The major drawback of the BP network is its slow convergence speed caused by
the local minima. The extreme learning machine (ELM) network has the capability
of providing better generalization and much faster learning speed than BP
networks. The ELM network is a type of novel FNN, which was developed by
Huang et al. at Nanyang Technological University, Singapore, in 2004 (Huang
et al., 2004). Compared with BP networks, ELM networks contain only one
hidden layer and use ELM algorithms as learning algorithms.
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The structure of the ELM network is shown in Fig. 2.6. It is assumed that the
ELM network with m hidden neurons and activation function f(x) is trained to
approximate N distinct samples (u,,y,) with zero error means, where u, is the input
of samples and u, = [u ,u,, ..., um] € R’, y, is the output of samples and
A7l DS y[p] € R?. In ELM networks, input weights and hidden biases are
generated randomly. Non-linear ELM networks can thus be converted into the
following linear system.

MpB=T, (1) where M = {/h. S @=1,..,Nandj=1,...,m) denotes the hidden-
layer output matrix, h, = f(w cu Tt b) is the output of the jth hidden neuron
neuron( j,2) with respect tou; w, = [w/], Wo oo wjn]T is the weight vector
connecting neuron(j,2) and 1nput neurons and b denotes the bias of neuron(] 2);
W, u, denotes the inner product ofw/ andu; B=[B,, ... ﬁ - B, "G =1,

m) 1S the matrix of output weights and /3’ [/J)j " ﬁj s e ﬁ ] denotes the Welght
vector connecting neuron(j,2) and output neurons; Y = [yl,yz, e yN] is the
matrix of targets (desired outputs).

The determination of output weights between hidden and output layers is to
find the least-square solution to the given linear system. The minimum norm
least-square solution to linear system (1) is = M"Y, where M' is the Moore—
Penrose generalized inverse of matrix M. The minimum norm least-square
solution is unique and has the smallest norm among the least-square solutions.

Compared with BP algorithms, ELM has much faster learning and convergence
speed because its network weights are obtained by using random generation and
a least-mean squares method based on a Moore—Penrose’s generalized inverse,
instead of using iterative weight adjustment. In addition, ELM can avoid
difficulties experienced by BP algorithms, such as selection of stopping criteria,
learning rate and learning epochs, due to its distinct learning mechanism.

2.4.4 Learning vector quantization network

Learning vector quantization (LVQ) is a supervised learning technique invented
by Teuvo Kohonen (1988; 1990). The LVQ network is the precursor of the self-
organizing map NN. Both of them are based on the Kohonen layer, which is
capable of sorting items into categories of similar objects with the aid of training
samples, and are widely used for classification.

Topologically, an LVQ network consists of an input layer, a single Kohonen
layer (also known as competitive or hidden layer) and an output layer. Figure 2.8
shows the structure of an LVQ network. The Kohonen layer contains a number of
neurons placed in the nodes of a lattice, which maps input vectors into clusters that
are found by the network during training. The output layer merges groups of
previous layer clusters into classes defined by target data. Unlike traditional FNNs,
the neurons between the Kohonen layer and the output layer are not fully connected.

LVQ procedures are intuitively clear and easy to implement. The classification
of data is based on a comparison with a number of so-called prototype vectors.
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Cluster 1

Cluster 2

Cluster 3

Input
vector

2.8 Structure of learning vector quantization (LVQ) network.

Prototypes are determined in training from labeled examples and can be interpreted
in a straightforward fashion as they directly represent typical data in the same
input space, in contrast with adaptive weights in FNNs, which do not allow
immediate interpretation easily.

The procedures of LVQ permit only the update of winning prototypes (i.e. the
closest prototype of the LVQ network). The prototype vector w is moved in
the direction of the input vector x if the class of the input vector and that of the
prototype vector match. Otherwise, the prototype vector w is moved away from
the direction of the input vector x. LVQ proceeds as follows:

* Step 1. Initialization: Initialize the prototype vectors {w(0) [/ =12,..., N}.
by setting them equal to the first N exemplar input vectors {x,|i=1,2,...,L}.
Usually, L > N.

e Step 2. Sampling: Draw a sample (vector) x from the input data; x represents
the new pattern input for LVQ.

* Step 3. Similarity Matching: Find the best matching prototype vector w; at
time n based on the minimum-distance Euclidean criterion:

argmin [ () =W (1) j=1.2... .
7 -

e Step 4. Adaptation: Adjust only the best matching prototype vector, while the
others remain unchanged. It is supposed that a prototype vector w_ is
the closest to the input vector x.. Let Cdenote the class associated with the
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prototype vector w, and C_ denote the class label of the input vector x,. The
prototype vector w_ is adapted as follows:

w (n)+a [x,-w (n)], C, =C,
w (n+l)= ¢ |
¢ w (n)-a[x,-w (n)], C, =C,

The learning constant o (0 < ¢ < 1) is chosen as a function of the discrete
time parameter n. It is desirable for the learning constant a to decrease
monotonically with the number of iterations 7.

e Step 5. Termination Checking: Stop if there are no noticeable changes in the
above procedures. Otherwise, go to Step 2.

One of the advantages of LVQ is that it creates prototypes that are easy for experts
to interpret in the respective application domain. The key issue of LVQ is to
choose an appropriate measure of similarity for training and classification. The
original method relies on the Euclidean distance corresponding to the assumption
that data can be represented by isotropic clusters. To provide more general metric
structures, some alternative techniques have been proposed (Schneider et al.,
2009), such as relevance adaptation in generalized LVQ (GLVQ) and matrix
learning in GLVQ.

2.5 Fuzzy logic

Fuzzy logic is not logic that is fuzzy, but a kind of precise logic of imprecision and
approximate reasoning. Humans usually rely on practical knowledge and judgement
to solve problems. Human knowledge is often vague and ambiguous. For example,
a piece of practical knowledge might be: ‘“Though the material delivery is slightly
delayed, the production schedule can remain unchanged.’ It is unclear how many
days constitute a slight delay. Fuzzy logic attempts to model human reasoning
with imprecise and incomplete knowledge. Through fuzzy logic, a system cannot
only represent such imprecise concepts as slow, late and expensive, but also use
these concepts to make precise deductions with imprecise data.

2.5.1 Uses of fuzzy logic

The real world is pervaded with fuzziness. Most human knowledge is described in
natural languages for describing perceptions. Due to the intrinsic impreciseness of
human perceptions, natural languages are pervasively imprecise in the sense that
almost everything admits of degrees therein. For example, linguistic terms, such
as distance, area, speed and temperature, are all expressed on a sliding scale. The
distance between Hong Kong and London is very far. The area of Russia is very
large. Rabbits run very fast. The boiler temperature is very high. The values of
these linguistic terms are vague and imprecise. Classical Boolean or conventional
logic is not capable of capturing and expressing the vagueness of linguistic terms.
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Boolean logic uses sharp distinctions and forces us to separate members of a
class from non-members. For example, one may regard lower than 180 cm as short
and higher than 180cm as tall. Based on this standard, Mike, who is 178 cm, is
short. However, Boolean logic cannot decide whether Mike is really short or the
standard is just arbitrarily set. Such absurdities can be avoided by using fuzzy logic.

Unlike two-valued Boolean logic, fuzzy logic is an extension of multi-valued
logic. Instead of just completely true or false, fuzzy logic accepts that things can
be partly true and partly false at the same time, which is consistent with human
reasoning. Fuzzy logic also deals with degrees of truth by using the continuum of
logical values between 0 (completely false) and 1 (completely true). Therefore,
fuzzy logic is more accurate than Boolean logic in dealing with fuzzy reality.

2.5.2 Fuzzy set
Fuzzy set representation

The fuzzy set theory is an outgrowth of the classical set theory. First, recall the
classical set theory, which views the world as either black or white. Let X be the
universe of discourse and x be its elements. According to the classical set theory,
crisp set A of X'is defined by the characteristic function f(x) of set 4.

f):X—0,1
where
L fxeA
fA(X)_{O, iFxed

Based on the fuzzy set theory, fuzzy set 4 of X is defined by its membership
function u,(x)

() X — [0, 1]

where

1, if x is totally in A4,
u,(x)y=40, if x is not in 4;

u (O<u<l), if x is partly in A.

For any element x of universe X, membership function u (x) equals the degree to
which x is an element of set 4. This degree represents the degree of membership,
also known as the membership value of element x in set 4. The most commonly
used membership functions are triangular, trapezoidal, piecewise linear and
Gaussian functions because they are easily prepared and computationally fast.
The choice of membership functions is largely arbitrary because there is no
theoretical justification for using one rather than another. The number of
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membership functions is dependent on users. More membership functions can
achieve greater resolution but also cause greater computational complexity.

Linguistic variables and hedges

The idea of linguistic variables is essential to development of the fuzzy set theory.
Fuzzy logic is primarily associated with quantifying and reasoning out imprecise
or vague terms that appear in our languages. These terms are referred to as linguistic
or fuzzy variables. For example, the statement ‘the completion date is late’ implies
that the linguistic variable ‘completion date’ takes on the linguistic value ‘late’.

The range of possible values of a linguistic variable represents the variable’s
universe of discourse. For example, the universe of discourse of the linguistic
variable ‘completion date’ might have the range between 1 and 10 days, and
include fuzzy subsets such as early, normal and late.

A linguistic hedge is an operation that modifies the meaning of a fuzzy set,
which can be understood as terms that modify the shapes of fuzzy sets by using
adverbs such as very, quite, more, less and slightly. It is assumed that we have
already defined a fuzzy set to describe a late completion date. If we need to talk
about how late the completion date is, we can use a hedge to change the fuzzy set.
For example, very late, moderately late and slightly late are examples of hedges
applied to the fuzzy set of the late completion date.

Figure 2.9 shows an application of hedges (very). The universe of discourse —
men’s heights — consists of five fuzzy sets: very short, short, average, tall and very
tall. For example, a man 180 cm tall is a member of the fall set with a degree of
membership of 0.5 and a member of the very tall set with a degree of membership
of 0.2.

Fuzzy set operations

Fuzzy set operations are a generalization of crisp set operations, each of which is
a fuzzy set operation. In fuzzy logic, three operations, including fuzzy complement,
fuzzy intersection and fuzzy union, are the most commonly used. Let fuzzy sets 4
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2.9 Fuzzy sets with hedge.
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and B be described by their membership functions u (x) and wu,(x). The three
fuzzy set operations are defined below.

¢ Fuzzy complement: The complement of a fuzzy set is the opposite of the set
in question. The fuzzy complement of fuzzy sets 4 can be represented as

W) =1- ().
¢ Fuzzy intersection: Fuzzy intersection is the fuzzy operation for creating the

intersection of fuzzy sets 4 and B on the universe of discourse X, which can
be obtained as:

) = min(ae (3, 1,(6)) = 1,(6) N 1, (), where x € X.

¢ Fuzzy union: The union of two fuzzy sets is the reverse of their intersection.
That is, the fuzzy union is the largest membership value of the element in
either set. The fuzzy union for forming the union of fuzzy sets 4 and B on the
universe of discourse X can be given as:

H,00) = Max(u2,(0),44,(x)) = p1,(x) U p1,(X), where x € X.

2.5.3 Fuzzy rule

In one of his most influential papers, Lotfi Zadeh presented an outline of a new
approach to analysis of complex systems and decision processes (Zadeh, 1973).
He suggested using fuzzy rules to capture and express human knowledge. Human
knowledge is usually in the form of ‘if-then’rules, which can be easily implemented
by fuzzy conditional statements.

A fuzzy rule is defined as a conditional statement in the form:

IFxis A THEN yis B

where x and y are linguistic variables; 4 and B are linguistic values determined by
fuzzy sets on the universes of discourse X and Y, respectively.

Fuzzy reasoning involves two parts: evaluating the rule antecedent (the IF part
of the rule) and applying the result to the consequent (the THEN part of the rule).
Like the rules in expert systems, a fuzzy rule can have multiple antecedents joined
by fuzzy operators AND or OR, or multiple consequents joined by fuzzy operator
AND. For example:

IF the delivery date is late AND the tardiness penalty is high, THEN the production
cost is high.

IF the material delivery date is late, THEN the completion date is late AND the
tardiness penalty is high.

2.5.4 Fuzzy logic system

A fuzzy logic system maps crisp inputs into crisp outputs using the theory of
fuzzy sets. In a fuzzy logic system, an inference engine works with fuzzy rules.
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The engine takes inputs, some of which may be fuzzy, and generates outputs,
some of which may be fuzzy. The fuzzy core of the inference engine is bracketed
by one step that can convert crisp data into fuzzy data, and another step that does
the reverse. Figure 2.10 shows the general procedures involved in a fuzzy logic
system as follows.

Fuzzification of input data

The first step is to take the crisp input x and determine the degree to which the
input belongs to each of the appropriate fuzzy sets.

Fuzzification is the process of mapping crisp input x € U into fuzzy set 4 € U.
This is achieved with three different types of fuzzifier, including singleton
fuzzifiers, Gaussian fuzzifiers, and trapezoidal or triangular fuzzifiers. These
fuzzifiers map crisp input x into fuzzy set 4 with different membership functions
u,(x) listed below.

Crisp input

|

Fuzzification of the
input data

v

Evaluation of fuzzy
rules

v

Aggregation of the
outputs of fuzzy rules

A 4

Defuzzification of the
output

|

Crisp output

2.10 The general structure of a fuzzy logic system.
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Membership function of singleton fuzzifier:

uxm={l Jam

0 otherwise

Membership function of Gaussian fuzzifier:

e e A

4 e n

u,()=e

where {a,i=1, ..., n} are positive parameters.
Membership function of triangular fuzzifier:
bx

—x‘ X =X
1 n n

I-— ...
MA(X)= bl b,,

0 otherwise

if |x,. —xl,| < bl,.i =1,2,...n

where {b,i =1, ..., n} are positive parameters.

Evaluation of fuzzy rules

After input data are fuzzified and their membership values obtained, the next step
involves application of them to the antecedents of fuzzy rules. If a given fuzzy
rule has multiple antecedents, a fuzzy operator (AND or OR) is used to obtain a
single number that represents the result of antecedent evaluation. This number is
then applied to a consequent membership function.

AND is used to evaluate the conjunction of rule antecedents. Typically, fuzzy
logic systems utilize the classical fuzzy operation intersection to implement this
operation. Consider fuzzy rule 1:

Ifxis AAND yis B, thenz is C.

Assume u (x) = 0.1, u(v) = 0.6, then we have u (z) = min[u (x),u,(v)] = 0.1.

Similarly, OR is used to evaluate the disjunction of rule antecedents, which is
implemented by the classical fuzzy operation union in fuzzy logic systems.
Consider fuzzy rule 2:

Ifxis AOR yis B, then z is C.
Assume u (x) = 0.1, u,(y) = 0.6, then we have

() = max[, (x).p1,()] = 0.6.
Aggregation of outputs of fuzzy rules

Several fuzzy rules often provide fuzzy information about the same variable and
different outputs must be combined. Aggregation is the unification of outputs of
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all fuzzy rules. That is, aggregation takes membership functions of all rules’
consequents and combines them into a single fuzzy set. Fuzzy set operations, such
as union and intersection, can be used to implement aggregation.

Defuzzification of the output

The last step in a fuzzy logic system is defuzzification. As the name suggests,
defuzzification is the opposite of fuzzification, which produces crisp output ' for
a fuzzy logic system from the aggregated output of fuzzy set B. A number of
defuzzifiers have been developed; the most popular is the centroid defuzzifier,
which finds a vertical line and divides an aggregated set into two equal portions.
Mathematically the center of gravity (COG) can be defined by:

[ u,()ydy
[ u,(ndy

In addition to centroid defuzzifiers, maximum defuzzifiers and means of maxima
defuzzifiers are also commonly used.

y'=COG =

e Maximum Defuzzifier: This defuzzifier chooses y' as the point at which
associated membership functions achieve their maximum values.

e Mean of Maxima Defuzzifier: This defuzzifier examines fuzzy set B,
determines values for which associated membership functions achieve their
maximum values and computes the mean of these values as its output y'.

2.6 Conclusions

This chapter provides a brief introduction to the family of Al techniques so that
readers can gain a basic understanding of the Al family and various Al techniques,
and understand the subsequent chapters more easily. This chapter introduces the
definition of artificial intelligence and presents a brief overview of artificial
intelligent techniques. Some representative Al techniques are briefly introduced,
all of which have been used for decision making in the fashion supply chain. We
also discuss the origins of these techniques, fundamental characteristics, and
possible applications as well as the procedures to implement them.

A number of research outputs show the effectiveness of Al techniques for
decision making in the fashion industry, as well as their superiority over classical
approaches (Guo et al., 2011). The subsequent chapters will introduce several
representative applications of Al in the fashion supply chain.

The fashion supply chain is characterized by short product life cycles, volatile
and unpredictable customer demands, tremendous product variety, labor-intensive
production, and long supply processes. These distinct features increase the
complexity of decision making in the fashion supply chain. As a result, research
on Al applications in the fashion industry is still limited, although great research
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advances have been made so far. A great number of issues are worthy of research,
for example, production planning and control with unreliable material supplies
and dynamic customer demands, and retail replenishment with uncertain delivery
dates by apparel manufacturers.
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Abstract: The direct investment and joint ventures of clothing manufacturers
in developing regions have grown rapidly over the last few decades.
Manufacturers have encountered difficulties when selecting the plant location
however, because their decisions are based on subjective judgments and
inconsistent assessments rather than on a clear classification system.
Variances between potential plants cannot always be represented in terms

of objective value, such as country risk and community facilities. Clothing
manufacturers must also consider more intangible factors such as the social
environment and political stability when deciding the most appropriate site
for production. Classification methods are a more efficient and less time-
consuming way of organizing a number of sites into different levels of
appropriateness, thereby allowing clothing manufacturers to make more
informed and objective decisions about plant locations. This chapter
investigates two recent types of classification technique; unsupervised

and supervised artificial neural networks. The limitations of the adaptive
resonance theory of the unsupervised artificial neural network are
demonstrated in this chapter and a comparison of the performance of the
three types of supervised artificial neural network, back propagation,
learning vector quantization and probabilistic neural network are presented.
The supervised artificial neural network has proved to be an effective classifier
in which the probabilistic neural network performs better than in the other
networks on the site selection problem.

Key words: clothing manufacture, artificial neural network, plant
location.

31 Introduction

In clothing manufacture, decisions about using overseas production sites are
regarded as complicated because of numerous location factors as well as the
complexity caused by trade agreements instituted with trade blocs such as
NAFTA, EU or AGOA. The changing market dynamics have forced companies
to consider macro-environmental factors including economic, social, political,
legal and technological issues as well as micro-environmental factors such as
customers, competitors and suppliers (Uncu et al., 2002). Plant location decisions
for foreign direct investment have therefore created problems for clothing
manufacturers.

41
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Different decision-making techniques have been developed to assist with the
selection of plant locations. These techniques include: scaling (ranking or scoring)
methods (Hoffman and Schniederjans, 1994); the analytic hierarchy process
(Yurimoto and Masui, 1995); mathematical programming (Brimberg and Revelle,
1999; Schmidt and Wilhelm, 2000); heuristic algorithms (Ronnqvist, 1999; Verter
and Dasci, 2002) and simulation (Chakravarty, 1999). Various types of artificial
intelligence techniques (Liang and Wang, 1991; Yurimoto and Masui, 1995; Kuo
etal., 2002; Au et al., 2006) have also been used to search for optimal sites.

These techniques depend on the subjective judgement of the manufacturer and
therefore rely heavily on their knowledge and experience. Additionally, in cases
where sites have only slightly different scores, it is difficult to conclude that site
A is really better than site B at a particular moment or under different conditions.
Classification methods are an efficient and less time-consuming way of organizing
a number of sites into different levels of location appropriateness so that clothing
manufacturers can make their selection more easily.

3.2 Classification methods using artificial
neural networks

Several recently proposed classification techniques, which use artificial neural
networks (ANN) and fuzzy logic, are very promising candidates for decision-
making applications. These techniques can be divided into two general categories:
(a) supervised techniques in which labeled training samples are used for optimizing
the design parameters of the classification system; and (b) unsupervised
techniques, or automatic classification using data clustering algorithms. Different
types of ANN can act as the classifier, including back propagation (BP), learning
vector quantization (LVQ), and probabilistic (P) networks, which are supervised
techniques, as well as adaptive resonance theory (ART) and self-organizing
feature maps (SOFM), which are unsupervised ones. Supervised neural networks
use an omniscient input which is presented during training in order to learn what
the correct answer should be. This type of neural network performs well in a
multiple criteria decision-making problem. Contrastingly, the unsupervised neural
network has no knowledge of the correct answer and cannot know exactly what
the correct response should be. This type of unsupervised neural network has
some limitations in multiple criteria decision-making. The details of these
techniques are further discussed in Section 4.

3.2.1 Back propagation networks

Back propagation is a supervised learning technique, which is capable of
computing a functional relationship between its input and output. In general,
the BP network is multilayered, fully connected and most useful for feed-
forward networks. The first and last layers are called the input and output layers,
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respectively. The layer/s between the input layer and the output layer is/are called
the hidden layer/s.

Several researchers have demonstrated that during training, a BP network tends to
develop internal relationships between the nodes so as to organize the training data
into classes of patterns (Freeman and Skapura, 1992). The key concept of the BP
network is that given the training inputs, there is an internal representation to generate
the desired outputs. This same internal representation can be applied to inputs that
were not used during training. The BP network will classify these previously unseen
inputs according to the features they share with the training examples.

3.2.2 Learning vector quantization networks

The learning vector quantization network was developed by Teuvo Kohonen in
the mid-1980s (Teuvo, 1995). It is known as a kind of supervised ANN model and
is mostly used for statistical classification or recognition. Topologically, the LVQ
network contains an input layer, a single LVQ layer and an output layer. The
network can be trained to classify inputs while preserving the inherent topology
of the training set. LVQ not only offers ways to interpret behavior, but can also be
trained using an appropriate distance measure. The architecture of the LVQ
network means that it can perform more accurate classifications in many types of
problem (Luo et al., 2003).

3.2.3 Probabilistic networks

The probabilistic network is a non-linear and non-parametric pattern recognition
algorithm, originally introduced by Donald Specht in the 1980s. The P network
operates by defining a probability density function (PDF) for each data class
based on the training set data and the optimized kernel width parameter (Specht,
1990). It is a three-layer network, composed of the input layer, the radial basis
layer, and the competitive layer. The radial basis layer of the P network is the core
of the algorithm. During the training phase, the pattern vectors in the training set
are simply copied to the radial basis layer of the P network. Unlike other types of
ANN, the P network has only a single adjustable parameter. This parameter,
termed sigma (0), or kernel width, along with the members of the training set,
defines the PDF for each data class. Each PDF is composed of exponential-shaped
kernels of width o located at each pattern vector. The PDF essentially determines
the boundaries for classification (Hammond ef al., 2004).

3.3 Classifying decision models for the location
of clothing plants

The proposed decision model for classifying clothing plant location using neural
networks can be separated into two sequential phases: the learning (preference
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assessing) phase and the executing (decision-making) phase. The goal of
the learning phase is to train the neural network with the prior knowledge in
terms of the experts’ experience, whereas the goal of the executing phase is to
obtain the most desirable alternative based on the constructed neural network
model. The flow chart of the proposed classification decision model is shown in
Fig. 3.1.

Unlike the conventional methods of location selection, this model does not
require that the weight of each factor be determined, which is often a very difficult
and time-consuming task. Instead, classification of the selected alternatives with
associated preference relations according to the prior knowledge is required. The
ANN is therefore essentially used to establish the classification decision rule
about locating a clothing plant based on only a limited number of the selected
sites. Figure 3.2 illustrates the learning process of the ANN classification model.
The ANN can thus act as a rational proxy on behalf of the decision-maker to
evaluate and classify any alternatives.

Identify the factors about clothing
plant location; stratify them using
analytic hierarchy process method

y

Choose a set of representative
sites for locating clothing plant

|
. |

Classify these sites based | Data collection |
on the prior knowledge

Atrtificial neural network
classification model

Decision making

3.1 Flow chart of the classification decision model of site selection
for clothing plant.
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Prior knowledge

Artificial neural
network
A

Selected
sites

Learning algorithm

3.2 Learning process of artificial neural network.

3.3.1 Identification of location factors

The analytic hierarchy process (AHP) is one of the most extensively used multi-
criteria decision-making methods. One of the main advantages of this method is
that it is able to relatively easily handle multiple criteria. After reviewing the
information in related publications and ascertaining the experts’ opinion of the
industry, we established 10 important factors on level 1 of the AHP, which we
further divided into 16 related sub-factors at level 2 in the clothing plant location
problem, each with appropriate evaluation indices. Figure 3.3 shows the
hierarchical structure of location factors in the selection of clothing production
sites. After identifying the location factors, a set of representative sites for locating
clothing plants would be chosen for classification. This study focuses on 20 sites
and is mostly concerned with Hong Kong clothing suppliers. Quantitative
measures of all factors for each site were collected and computed based on The
World Competitiveness Yearbook (International Institute for Management
Development, 2002) and related government publications.

3.3.2 Classification based on multi-attribute utility model

The next step was to produce rank ordered lists of the sites based on their suitability
for locating clothing production sites. Although we can refer the classification of
the chosen sites to the experts by questionnaire, the multi-attribute utility (MAU)
model, a traditional systematic model for scoring, is more suitable for dealing
with this classification problem, which will be utilized to benchmark the relative
performance of the proposed ANN classification decision model. The MAU
model can be mathematically stated as follows:

i=1 where
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The resultant suitability indices of the alternative candidates for locating clothing
manufacturing sites are shown in Table 3.1. The sites are classified into four

Optimizing decision making

S = suitability index calculated for country
j = candidate country number

i = location factor number

w, = weight assigned to factor i

x;= normalized value assigned to factor i for country j
n = number of location factors

m = number of candidate locations

groups based on a subjective grouping of the suitability indices.

» =~ 0 ~ 0 T

- 0o -

» O~ =0

3O ———~ 0 0O —0O »

Level 1 Level 2 Evaluation indices
Cost 1. Office rent
—| A. Land and construction H:
Availability for expansion 2. Arable area
Skill 3. Skilled labor
—| B. Labour H: -
Wage rates 4. Compensation levels
Infrastructure 5. Density of network
—|C. Transportation H: L
Cost 6. Distribution infrastructure
—|D. Proximity to markets HCompetition H7. Exports of goods

—E Utilities and real estate

Costs and taxes

8. Collected corporate taxes

1

Rules and regulations

9. Public service

—| F. Country status

Member of free trade region

10. Member of free trade

1l

Country risk

11. Risk of political instability

—|G. Government policies

Financial system

12. Foreign investors

H: Government rules and attitudes

13. Government decision

—|H. Competition

HCIustering

H14. Foreign company

—| |. Machinery & service

HTechnicaI support

H 15. Machinery technical

—IJ. Community conditions

H Social security

H 16. Social security

3.3 Hierarchical representation of location factors for clothing
manufacturing sites selection.
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Table 3.1 Grouping and suitability indices for
locating clothing manufacturing sites

Group  Suitability index Candidate site

A 0.6894 China
0.6831 Pakistan
0.6622 India
0.6482 Thailand
0.6419 Sri Lanka

B 0.5973 Philippines
0.5803 Cambodia
0.5777 Mauritius
0.5750 Myanmar
0.5724 Vietnam
0.5715 Bangladesh
0.5698 Indonesia
0.5663 South Africa

C 0.5543 Malaysia
0.5359 Mexico
0.5305 Taiwan
0.5218 Turkey

D 0.4854 Israel
0.4518 Brazil
0.3839 Argentina

3.4 Classification using unsupervised artificial
neural networks (ANN)

Gaber and Benjamin utilized the adaptive resonance theory (ART2), a typical
unsupervised ANN, in classifying US manufacturing plant locations (Gaber and
Benjamin, 1992). In their study, the ART?2 yielded results similar to those obtained
using the MAU model and its’ performance was very encouraging. However, this
method has limitations when dealing with classification decision problems as
demonstrated in the following example:

Assuming that seven sites (S1, S2, S3, S4, S5, S6 and S7) were chosen, they
should be classified based on their suitability for establishing a clothing plant. In
order to assess the ability of ART2 for classifying the sites, the MAU model was
first employed for classification. To elaborate this example clearly, four factors
F1, F2, F3 and F4 to assess the sites were defined. The tentative scores of the
seven sites are shown in Table 3.2.

To calculate the suitability indices of the seven sites, the weight of four factors
should randomly be assigned first. Five random cases of the weights of the four
factors were assumed as shown in Table 3.3. Table 3.4 illustrates the resultant
suitability indices in each case after computation. Based on the suitability indices
of the five cases, the seven sites could be classified into three groups, namely
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Table 3.2 Tentative scores for the
seven sites

Sites F1 F2 F3 F4

S1 0.8 0.8 0.8 0.8
S2 0.2 0.4 0.8 0.8
S3 0.2 0.4 0.1 0.6
S4 0.4 0.2 0.8 0.5
Sb 0.1 0.1 0.1 0.1
S6 0.3 0.8 0.6 0.1
S7 0.8 0.1 0.6 0.3

Table 3.3 Five cases of the weights of the
four factors

F1 F2 F3 F4

Case1 0.25 0.25 0.25 0.25
Case2 0.4 0.1 0.1 0.4

Case3 0.85 0.05 0.05 0.05
Case4 0.05 0.05 0.85 0.05
Case5 0.05 0.85 0.05 0.05

Table 3.4 Resultant suitability indices of the five cases

Sites Case 1 Case 2 Case 3 Case 4 Case b
S1 0.8000 0.8000 0.8000 0.8000 0.8000
S2 0.5500 0.5200 0.2700 0.7500 0.4300
S3 0.3250 0.3700 0.2250 0.1450 0.3850
S4 0.4750 0.4600 0.4150 0.7350 0.2550
S5 0.1000 0.1000 0.1000 0.1000 0.1000
S6 0.4500 0.3000 0.3300 0.5700 0.7300
S7 0.4500 0.5100 0.7300 0.5700 0.1700

Groups A, B, and C. Those sites with scores greater than 0.70 were classified as
Group A, those with scores ranging from 0.40 to less than 0.70 were classified
as Group B and those sites with scores less than 0.40 were classified under
Group C, as shown in Table 3.5.

In Table 3.5, the variance of the weights of the factors has a great influence
on the classification results, which could lead to an opposite result. For example,
the classification results of site ‘S7’ is Group A, B and C in cases 3, 4 and 5,
respectively. On the other hand, after using ART?2, the seven sites were classified
based on the data stated in Table 3.2. The result is shown in Table 3.6.
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Table 3.5 Classification results of the seven sites of
the five cases

Sites Case1 Case2 Case3 Cased4 Caseb

S1 A A A A A
S2 B B C A B
S3 C C C C B
S4 B B B A Cc
Sb C C C C C
S6 B C C B A
S7 B B A B Cc

Table 3.6 Classification result using ART2

Sites Group

S1
S2
S3
S4
S5
S6
S7

W>I>WOO >

Comparing the results of the ART2 in Table 3.6 with that of the MAU model in
Table 3.5, the following points can be addressed:

1. The classification result of ART2 only produced a unique result due to its
automatic classification characteristic. This implies that ART2 cannot reflect the
influence of different levels of importance of the factors on the suitability indices.

2. Though both vectors S1 and S5 differ only in amplitude in Table 3.2, they are
classified into different groups which can seen in Table 3.5. In Table 3.6, they
are classified into the same group since one of ART2 characteristics is that
vectors that are just simple multiples of each other are treated as the same group.

Based on the above analysis, it can be concluded that the unsupervised ANN is
inappropriate for solving the classification decision problem. The performances
of several supervised ANN were thus investigated for their use in the proposed
model.

3.5 Classification using supervised ANN
3.5.1 Classification using the back propagation network

The first ANN classifier used in the proposed model was a two-layered
feed-forward network trained with the BP. The network received 16 real values
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3.4 Notation of the architecture of BP network.

of the sub-factors as a 16-element input vector in order to identify the sites by
responding with a 4-element output vector representing 4 classes of site suitability.
The network responded with a value of 1 in the position of the site being presented
to the network, while all other values in the output vector would be 0. The
architecture of BP is shown in Fig. 3.4.

The network was formulated as a two-layered log-sigmoid/log-sigmoid
network in which the log-sigmoid transfer function was employed since its
output range was perfect for learning the output bipolar values, i.e. 0 and 1.
The hidden layer had 29 neurons after trial test (for details, please see
Table Al.1 in the Appendix). In order to identify the class for each input vector,
the network was trained to output a value of 1 in the correct position of the output
vector and fill the rest of the output vector with 0’s. Since the exact 1’s and 0’s
could not be produced by the output of the network during the simulation process,
it was necessary to pass the output through the competitive transfer function
‘compete’ in order to ensure that the output value must be 1 while the others
have a value of 0.

Among the 20 sites, 15 sites were selected randomly as training samples and
the other 5 sites were used for testing. Table 3.7 summarizes the results of the
correct classification of the five testing sites. The percentage shown in the table
represents the number of correct classification times out of 1000 trials in which
random initial weights were used in each trial. In each trial, the network was
trained until the squared error was less than 0.000001.

Table 3.7 Percentage of the correct classification using BP network

Testing site Original Percentage of times of
group the correct classification

Sri Lanka A 81.2%

Philippines B 97.6%

South Africa B 88.5%

Malaysia C 90.0%

Brazil D 93.5%
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3.5.2 Classification using the learning vector
quantization network

The second type of ANN classifier used in the classification decision model was
the learning vector quantization (LVQ) network, which had a competitive and
linear layer. The proposed LVQ network had a 16-element input neuron (16
location factors at level 2 for clothing manufacturing sites selection in Fig. 3.3)
and a 4-element output neuron (4 classified groups). The number of the hidden
layer had 10 neurons, which was also determined by trial test (for details, please
see Table A1.2 in the Appendix). The architecture of the LVQ network is shown
in Fig. 3.5. In order to train the LVQ network, the LVQ2 learning rule (Kohonen,
1997) was applied to improve the performance. Similar to the former BP method,
1000 trials were conducted to classify the sites. In each trial, the training epoch
was set at 200. The percentage of correct classification of the five testing sites is
presented in Table 3.8.

3.5 Abbreviation notation of the architecture of LVQ network.

Table 3.8 Percentage of the correct classification using LVQ network

Testing site Original Percentage of times of the
group correct classification

Sri Lanka A 100%

Philippines B 100%

South Africa B 83%

Malaysia C 100%

Brazil D 100%

3.56.3 Classification using the probability network

The last type of ANN classifier employed is the probabilistic (P) network, which
is a feed-forward neural network in which a Bayesian decision strategy for
classifying input vectors is implemented (Freeman, 1994). The P network has a
16-element input neuron and a 4-element output neuron. Figure 3.6 depicts the
architecture of a P network.
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3.6 The abbreviation notation of the architecture of P network.

Table 3.9 Percentage of the correct classification using P network

Testing site Original Percentage of times of the
group correct classification

Sri Lanka A 100%

Philippines B 100%

South Africa B 100%

Malaysia C 100%

Brazil D 100%

In Fig. 3.4, the transfer functions of this network in the first and second layer
are the common ‘radbas’ and ‘compet’ function, respectively. The hidden layer
had 15 neurons which were set by the algorithm of the probabilistic neural network
being equal to the number of the testing samples. Table 3.9 indicates that after
1000 trials were conducted, the percentage of correct classification of the 5 testing
sites is 100 which outperformed the BP and LVQ network.

3.6 Conclusion

In this chapter, the limitations of adaptive resonance theory of unsupervised
artificial neural network were demonstrated and it was concluded that this
classification technique is inappropriate for solving the classification decision
problem. Three types of supervised artificial neural network, including back
propagation, learning vector quantization and probabilistic neural network were
compared. The results in Tables 3.7, 3.8 and 3.9 indicate that these three supervised
artificial neural network yielded over 80 % of the correct classification, which is
benchmarked with the result generated from the multi-attribute utility model. The
supervised artificial neural network is thus proved to be a competent and effective
classifier for use in the decision-making domain. Of the three supervised artificial
neural network methods, the probabilistic network performs best since it is based
on probability. Better and possibly even optimal classification results could be
acheived by further investigation and by trying to combine the strengths of various
types of classifiers.
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3.9 Appendix: performance of back propagation (BP)
and learning vector quantization (LVQ) with a
different number of hidden neurons

Table A1.1 Performance of BP with different number of hidden neurons

Number of hidden neurons

9 19 29 49
Train MSE 1.01e-06 1.28e-06 1.14e-06 1.37e-06
Test MSE 0.15 0.101 0.064 0.069

Note: The mean squared error of training is 0.000001

Table A1.2 Performance of LVQ with different number of hidden neurons

Number of hidden neurons

5 8 10 15
Train MSE 0.075 0.089 0.058 0.021
Test MSE 0.138 0.058 0.034 0.068

Note: The training epoch is set at 200
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Optimizing apparel production order planning
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Abstract: In this chapter the order scheduling problem at the factory level is
investigated. Various uncertainties are considered and described as random
variables. A mathematical model for this order scheduling problem is presented
with the objectives of maximizing the total satisfaction level of all orders and
minimizing their total throughput time. Uncertain completion time and
beginning time of production process are derived from probability theory. A
genetic algorithm is developed to seek after the optimal order scheduling
solution. Experiments are conducted to validate the proposed algorithm by
using real-world production data. The experimental results show the
effectiveness of the proposed algorithm.

Key words: order scheduling, uncertain processing time, probability theory,
genetic algorithms.

41 Introduction

Faced with ever-increasing global market competition, today’s manufacturers
have to continuously improve their production performance so as to be more
competitive in the market. Effective production scheduling plays a significant role
in maximizing resource utilization and shortening production lead times. A large
number of studies have been published on production scheduling. These have
focused mostly on the scheduling for various types of production systems at the
shop-floor or assembly-line level, such as job shop scheduling (Adam et al., 1993;
Fayad and Petrovic, 2005; Guo et al., 2006; Kondakci and Gupta, 1991), flow
shop scheduling (Ishibuchi et al., 1994; Iyer and Saxena, 2004; Morita and Shio,
2005; Nagar et al., 1996), machine scheduling (Back and Yoon, 2002; Dimopoulos
and Zalzala, 2001; Fowler et al, 2003; Liu and Tang, 1999), assembly line
scheduling (Guo ef al., 2008; Kaufman, 1974; Vargas et al., 1992; Zhang et al.,
2000), etc.

Ashby and Uzsoy (1995) have presented a set of scheduling heuristics to solve
the order release and order sequencing problem in a single-stage production
system. Axsater (2005) has discussed the order release problem in a multi-stage
assembly network by an approximate decomposition technique. Their studies
only focused on determining the starting times for different processes of each

bb
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production order. Chen and Pundoor (2006) have considered order assignment
and scheduling in the supply chain, focusing on assigning orders to different
factories and finding a schedule for processing the assigned orders at each factory.
However, multiple shop floors and multiple assembly lines are set up in most
factories. The order scheduling problem at the factory level, involving scheduling
the production process of each order to the appropriate assembly line, has not
been reported so far.

The great majority of previous studies on production scheduling are based
on the deterministic estimation of the processing time of each production process
and the arrival time of each order. In real-life production environments, various
uncertainties often occur, such as uncertain customer orders, uncertain estimation
of processing time, and so on. Deterministic estimation does not reflect industrial
practice and will lead to an unsatisfactory scheduling solution. Moreover, without
considering these uncertain factors, it is difficult to achieve an optimized production
schedule in a real-life production environment. As an example, if a schedule is
generated without considering possible orders in the future, new rush orders may
interrupt those already scheduled, causing serious disruption of due dates.

This chapter will investigate the order scheduling problem at the factory level,
in which each production process corresponds to a unique shop floor comprising
one or multiple assembly lines. The objectives are first to maximize the total
satisfaction level of orders’ actual competition times, and also to minimize these
orders’ total throughput time by determining which assembly line to use and when
the production process of each order should be processed. In a make-to-order
manufacturing environment, it is very important to predict whether the due date
can be satisfied before receiving a new order from the customer and to schedule
the production of each process in different assembly lines. A typical example is
apparel manufacturing.

Some possible uncertainties in order scheduling will also be investigated in this
chapter. We consider the uncertain processing time as a continuous random
variable, and uncertain orders as well as arrival times as discrete random variables.
On the basis of the stochastic processing time, the stochastic beginning time and
completion time of processes are derived using the probability theory approach.
The genetic algorithm (GA) will be adopted to solve the order scheduling problem,
in which a novel process order-based representation with variable length of sub-
chromosome is presented.

The rest of this chapter is organized as follows. Section 4.2 defines the notations
which are used in this chapter. A detailed problem formulation for the order scheduling
problem is presented first in Section 4.3. Section 4.4 explains how to calculate the
stochastic beginning time and completion time. The proposed GA to solve the
addressed order scheduling problem is introduced in Section 4.5. In Section 4.6
experiments are conducted to validate the effectiveness of the proposed methodology
using real production data from an apparel manufacturing factory. Lastly, concluding
remarks are presented and further research is suggested in Section 4.7.
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4.2 Problem formulation

This section explains the formulation of the order scheduling problem in an order-
based manufacturing factory. Production processes of each order should be
performed in different types of shop floors respectively. Each type of shop floor
comprises one or more assembly lines. According to a pre-determined production
flow, production processes involved in each order must be completed on an
assembly line of the corresponding shop floor. For simplicity, we assume that
there is no work in progress (WIP) in each shop floor.

The real-life manufacturing environment is subject to the following constraints:

Arrival constraint: Order P, cannot be started until the arrival of this order, i.e.
A,<B,. [4.1]

e Allocation constraint: Production process R, can be only processed in the
corresponding shop floor which can process it, i.e.

X =0. [4.2]

ML, ESAL,

e Each production process must be performed, i.e.

X, =1 [4.3]

2

e Process precedence constraint: For one order, each process cannot start before
its preceding process is completed and the order is transported to the
corresponding assembly line, i.e.

C +ET <B_,R €SPR.). [4.4]

ij ij i” ij
e Processing time constraint: Process R, must be assigned processing time, i.e.
C,=B,+T,, [4.5]

In this chapter, T, is represented as a random variable whose probability density
function is defined as

k, ~T,.jk,+b] tL<T,.jk,stL+r/2

f(T:'jk[)= —kT +b2 tL+T/2<T:'jkIStL+T' [46]

]

0 otherwise
A graph off(TW) is shown in Fig. 4.1, in which the values of 7, 7, p, and p,, are
predetermined constants. The four constants can decide uniquely the proposed

probability distribution of processing time, and the vector form (¢,, T, p,, p,) can
thus be used to represent the probability density function of this type. Based on

© Woodhead Publishing Limited, 2013



58 Optimizing decision making

Py

Probability

k]
fiS

'
I
'
'
I
'
'
I
'
'
I
'
'
I
'
'
I

+
'
I
'
'
I
'
'

v

tL tL+ 72 tL+T
Processing time

4.1 Probability distribution of processing time.

the given vector, the values of &, b, and b, in Eq. 4.6 can be obtained easily.
Moreover, since the total probability in the sample space is 1, the following
relationship exists:

p,tp) =2 [4.7]

Because order P, can be uncertain or have uncertain arrival and/or processing
times, the above constraints 1-4 are required to be satisfied for each possible
realization to accurately model the uncertainties.

In the make-to-order factory, one of the most important production objectives is
to meet the due dates of production orders. Since the processing time of production
process is uncertain probabilistically, the completion time of each production
order is also uncertain. It is difficult to evaluate directly whether the due dates are
met. In this chapter, the total satisfactory level SL is used to evaluate the
performance of all orders to meet their due dates, which is expressed as follows:

SL= %2 [T r(C)s(Cd(C) [4.8]

i=1

where f(C)) is the probability density function of the actual completion time C, of
order P. s(C) describes the relationship of C, with its satisfactory level, which is
defined as

k,-C.+b, 1 <C =D,
s(C =1 k,-C+b, D <C=t,. [4.9]

0 otherwise
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A graph of s(C)) is shown in Fig. 4.2. The values of &, k,, b, and b, can be obtained
based on the given three coordinates in this figure. These coordinate values are
determined by the decision maker. The closer C, is to its due date, the higher the
satisfactory level of C. Moreover, the decrease of the satisfactory level is faster
when C, > D, than when C, < D.. This is because the former will lead to tardiness
penalties, which are greater than the earliness penalties generated by the latter.
The primary objective of the addressed problem is to maximize the total

satisfactory level SL, which is expressed as
. RN
Obj1:max SL(B, . X, )= max(— ¥, [ f(C))-s(C)d(C)) [4.10]
i=1

Based on the optimized total satisfactory level, the secondary objective of the
addressed problem is to minimize the expected value of total throughput time 77
of all orders, which is expressed as follows:

Obj2:minTT(B,, X,,) =min( (Y (C, - B,)) [4.11]

where C; — B, is the throughput time of order P, and £(-) denotes the expected
value of a random variable.

Satisfactory level

\OVV

Actual completion time

4.2 Relationship between C, and its satisfactory level.

4.3 Dealing with uncertain completion and
start times

In a real-life apparel manufacturing environment, uncertain start time and
completion time of operations invariably occur and must be dealt with.
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4.3.1 Completion time of production process

The completion time C; of process R, is determined by its beginning time and
processing time. Since the beginning tlme and the processing time are independent,
the probability density function of ij is equal to the convolution of probability
density functions of its beginning time and processing time according to the
theory of probability.

4.3.2 Start time of production process

Since both the processing time and the completion time of process R, are uncertain,
the beginning time of R, ., the subsequent process of R, is also uncertam Consider
a production situation: production processes R , and R, are assigned to assembly line
,, for processing, and the probability density functlons of the completion time of R ,

and R, are determined by vectors (7, p“, Py and (4,5, T,, P,y D) respectlvely,
Which are shown in Fig. 4.3 (assume #,, <¢,,). R, is the subsequent process of R,,.
Process R,, cannot begin until processes R, and Ii’21 are both completed.

The probability density function of the beginning time B,, of R, is computed as
follows:

Ift, +7,<t,, B, is determined by the completion time of R , and has the same
probablhty density function as the completion time C,, of R,,.

Ift, +t,>1t,>1t,, B, is determined by the completion times of R , and R,,. The
begmmng time B,, will locate between 7,, and #,, + 7,, and its cumulative probability
distribution functions F(B,,) in several different intervals are respectively as follows:

1 1 3
P, -P,-F, t,,=B,<t,
_J o2 pl.p3
F(B,)= P +P, P, t,<B, <t +1, [4.12]
3
le tL1+1rlsB22 <t,+T,

A
Put A A
21
Pu2 "
= :
a |
®© i
o) 1
o
o
Pro -
Pri
)
>
i1 fio ty f4+7 o+ Tiy
Processing time

4.3 Probability distributions of processing times of processes R,,
and R,,.
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where P]ZI, P;l, P;l are the cumulative probability distributions of the completion
time C,, of R, falling into (¢,,, ¢,), (¢,, ¢, + 7,) and (¢,, + 7, ¢, + T,), respectively,
and Piz is the cumulative probability distribution of the completion time C, of R ,
falling into (¢,, ¢,, + 7).

The probability density function f(B,,) of B, is

g(B,,)-g(B,,) h(B,,) 1,,=B,<t,
J(B,)= 8(B,)+g(B,,) h(B,)) 1, =B, <1, +T, [4.13]
g(B,,) t,+T7,=B, <t +7,

where g(-) is the probability density function of the completion time of R, and
h(*) is the probability density function of the completion time of R ,.

4.4 Genetic algorithms for order scheduling

The order scheduling problem addressed here is categorized as the combinational
optimization problem of NP-hard type (Ross and Corne, 2005) and the number of
its possible solutions grows exponentially with the number of assembly line,
orders and processes. It is very difficult for the classical technique to solve this
type of problem. Since the GA has been proven to be very powerful and efficient
in finding heuristic solutions from a wide variety of applications (Goldberg,
1989), it is adopted in this chapter.

The GA was first introduced by Holland (1975). It is a global heuristic search
technique whose mechanism is based on the simplifications of evolutionary
processes observed in nature. It is an iterative procedure which maintains a
population of chromosomes representing different possible solutions to a problem.
Each single iteration is called a generation. In each generation, the fitness of
each chromosome is evaluated, which is decided by the fitness function, and
some chromosomes are selected as the parental chromosomes. Based on the
parental chromosomes, new chromosomes, called offspring (also called child
chromosomes), are reproduced by two genetic operators, crossover and mutation.
The offspring are supposed to inherit the excellent genes from their parents, so
that the average quality of solutions is better than that in the previous generations.
This evolution process is repeated until some termination criterion is met. The
following sub-sections describe in detail how the GA is developed to solve the
addressed order scheduling problem.

4.41 Representation

The first step in constructing the GA is to define an appropriate genetic
representation (coding). A good representation is crucial because it significantly
affects all the subsequent steps of the GA. In this research, a process order-based
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representation with variable length of sub-chromosome is developed. Each
chromosome is composed of some sub-chromosomes. Each sub-chromosome
represents an assembly line and the value of each gene in the sub-chromosome
represents a process which the corresponding assembly line performs. The length
of sub-chromosome, i.e. the number of genes in the sub-chromosome, is variable.
If one sub-chromosome comprises multiple genes, it indicates that the
corresponding assembly line performs multiple processes according to the gene
sequence in the sub-chromosome.

Figure 4.4 shows two examples of this representation which describe 16
processes from 5 orders to be assigned to 6 assembly lines of 4 shop floors. As
shown in Fig. 4.4, each chromosome includes 6 sub-chromosomes which are
separated by brackets. The lengths of the sub-chromosomes corresponding to
assembly line 1 of shop floor 1 are different (3 and 2, respectively). Two feasible
solutions corresponding to the two chromosomes, represented as an array of
length 16, are:

[(Rll’ R41’ RSI) (RZI’ R}l) (RIZ’ R}Z’ RSZ) (R13’ R23’ R43) (R24’ R34’ R54)
(R14’ R44)]

and
[(Rll’ R4l) (RZI’ R3l’ RSI) (R]2’ R32’ RSZ) (RIS’ R23’ R43) (R24’ R34’ R54)
(Rw R44)]

Based on each solution, we can obtain the process assignment for different
assembly lines and the processing sequence of these processes. For example,
according to the first sub-chromosome of chromosome 1, three processes, R, , R,

and then R, will be performed in order in the assembly line 1 of shop floor 1.

4.4.2 |nitialization

The GA starts with an initial population of chromosomes. Either heuristic
procedures or random creations can be used to generate feasible chromosomes
that form the initial population. Anderson and Ferris (1994) have mentioned that
the performance of the GA scheme is not as good from the pre-selected starting

Chromosome 1
(Processes) P11, Ra1.Fsy a1, Rsy Ri2:R52.Rs2 | Ri3.Res,Rag | RoarFsaiFsa Ri4,Raa
Chromosome 2
(Processes) Ry1,Ry4 Ro1,R31,Rs1 | Ri2,R30,Rso | Ria,Ro3,Raz | R24:R34:Rsa Ry4,R4s
Assembly lines Line 1 of Line 2 of Shop floor Shop floor Line 1 of Line 2 of
Y shop floor 1 shop floor 1 2 3 shop floor 4 shop floor 4

4.4 Sample of the chromosome representation.
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population as it is from a random start. In this research each chromosome
is randomly initialized by assigning the processes of all orders to the
assembly lines which can handle it. The initialization process can be described as
follows:

e Step I. Initialize parameters: index i = 1, a population size u, population POP
={¢}.

e Step 2. Randomly generate a chromosome CHR , POP = POP U CHR.

o Step 3. Seti=i+1.1fi>u, STOP, else go to Step 2.

The procedure for randomly generating a chromosome is as follows:

e Step 1. Initialize parameters: the number of assembly lines in shop floor S, is
LQ,, the number of shop floors in the factory is SQ, and shop floor index & is
equal to 1.

e Step 2. Randomly divide the processes of all orders, which need be performed
in shop floor S,, into L, set of processes. Each set of processes forms a sub-
chromosome.

e Step 3. Place the generated sub-chromosomes into the corresponding positions
of the chromosome in turn.

o Step4.Setk=k+ 1.1f k> SQ, STOP, else go to Step 2.

4.4.3 Fitness and selection

Fitness function is defined as the fitness of each chromosome to determine which
will reproduce and survive into the next generation, which is relevant to the
objective functions to be optimized. The value of fitness function of a chromosome,
fitness, represents the probability of its survival. The greater the fitness of a
chromosome, the greater the probability it will survive.

In this research, objective functions 4.10 and 4.11 can be combined as below:

SL(B,.],XW)
]’Xijkl) =ma‘x(y—
TT(B,.X,,)

i

OBJ(B

; ) [4.14]
where y denotes the objective weight used to adjust the weighted relationship
between the satisfaction level objective and the throughput time objective, and it
can be adjusted according to the policy of the factory and the experience of the
decision maker. The fitness function fitness can thus be defined as

SL(B,. X,y

i

fitness=V" .
TT(B,.X,,)

[4.15]

i

The selection in the GA is the process of selecting chromosomes for the next
generation in terms of their fitness. Many selection schemes have been reported
(Biack, 1994). The tournament selection (Goldberg, 1989) is commonly utilized
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because it is simple to implement and provides good solutions. In this research,
this scheme is used and its procedure can be described as follows:

e Step 1. Set a tournament size k> 2.

e Step 2. Generate a random permutation of the chromosomes in the current
population.

e Step 3. Compare the fitness value of the first & chromosomes listed in the
permutation, and copy the best one into the next generation. Discard the
strings compared.

e Step 4. If the permutation is exhausted, generate another permutation.

e Step 5. Repeat Steps 3 and 4 until no more selections are required for the next
generation.

The scheme can control the population diversity and selective pressure by
adjusting the tournament size k. A larger value of & will increase the selection
pressure while decreasing the population diversity.

4.4.4 Genetic operators

Genetic operators are used to combine existing solutions into others and to
generate diversity. The former can be implemented by crossover, and the latter
can be implemented by mutation.

In the order scheduling problem addressed, each process must be carried
out in the corresponding type of assembly line. Thus, the genes of chromosomes
for different types of process should be independent and the genetic
operations can only be performed among genes with the same assembly line type.
Therefore, for the sub-chromosomes of each assembly line type, we perform the
corresponding genetic operators. The detailed descriptions of the two operators
are as follows.

Crossover

The crossover operation is a random process with a probability of crossover,
which breeds a pair of child chromosomes from a pair of parental chromosomes.
The typical probability of the crossover operator is between 0.6 and 1.0. A large
number of crossover operators have been proposed (Poon and Carter, 1995).
Uniform order crossover (Davis, 1991) is commonly utilized because it has the
advantage of preserving the position of some genes and the relative sequence of
the rest. It is adopted in this research and its procedure is as follows:

e Step 1. Create a bit string with same length as the chromosomes.

e Step 2. Copy the genes from Parent 1 wherever the bit code is ‘1’ and fill them
in the corresponding positions on Child 1. (Now we have Child 1 filled in
wherever the bit code is ‘1’ and we have gaps wherever the bit code is ‘0’.)

e Step 3. Select out the genes from Parent 1 wherever the bit code is ‘0.
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e Step 4. Permute these genes so that they appear in the same order as they
appear in Parent 2.

e Step 5. Fill these permuted genes in order in the gaps on Child 1.

e Step 6. To make Child 2, carry out a similar process according to Steps 2—5.

Figure 4.5 shows an example of the uniform order crossover operator.

Mutation

The mutation operation is critical to the success of the GA since it diversifies the
search directions and avoids convergence to local optima. It is used to transform
the chromosome by the means of randomly changing the genes. Only some
offspring take part in the mutation operation. The size is determined by the
probability of mutation (the typical value is between 0.0015 and 0.03). In this
research, the inversion mutation operator (Holland, 1975) is adopted, which is
implemented by simple inversion of the genes between two randomly selected
genes of a chromosome. Figure 4.6 shows an example of this mutation operator.

4.45 Termination criterion

The GA is controlled by a specified number of generations and by using a diversity
measure to stop the algorithm. The diversity of the GA is defined by the standard
deviation of the fitness values of all chromosomes of a population in a certain
generation. The standard deviation should be less than a certain value, which

Parent1 | A1 Raq Rs1 Roq Raq
Parent 2 Ro1 Raq Ry Raq Rs1
Random_blt 1 | 0 | 0 | 1 | 0 ‘

string

Child1 | Ry Ray Ra Ro1 Rs1

Child2 | Ra Raq Ry Ro1 Rs1

4.5 Sample of uniform order crossover operator.

Original chromosome | Ryy | Rat | Ast | Ror | Ra |

Mutated chromosome| Ry | R34 | A1 | Rs1 | Ry ‘

4.6 Sample of inversion mutation operator.
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corresponds to the lowest allowed diversity of the population. If either of these
two termination criteria is satisfied, the mechanism of the GA is terminated. For
example, assume that the specified maximal number of generations is 100 and the
lowest allowed standard deviation value is 0.2. Once the standard deviation is less
than 0.2, whichever generation the GA is running at, it will be terminated.

45 Experimental results and discussion

To evaluate the performance of the proposed algorithm for the order scheduling
problem, a series of experiments have been conducted. The experimental data were
collected from a make-to-order apparel manufacturing factory producing outerwear
and sportswear. This section highlights three of these experiments in detail. Each
example includes several cases. In each case, the order scheduling result generated
by the proposed method is compared with that of the practical method from
industrial practice. In industrial practice, all random variables are replaced by their
means and the subsequent deterministic problems are usually solved by using
precedence diagrams and trial-and-error method (Bhattacharjee and Sahu, 1987).
The investigated factory comprises seven shop floors, and each shop floor is
composed of one or two assembly lines. Each shop floor processes different
production processes. Each production process can only be performed in the
assembly line(s) of the corresponding shop floor. In this chapter, each production
process can only be assigned to one assembly line, and the uncertain processing
time obeys the probability distribution presented in Section 4.2 with 7 = 2.
Moreover, the transportation times between different assembly lines are also
negligible because they are much less than the processing times in assembly lines.

451 Experiment 1: order scheduling with uncertain
processing time

In this experiment, three different cases are presented, which are described in
detail as follows.

e (Case I: five production orders are scheduled in five shop floors performing
processes 1 to 5 respectively. The processing time of process 4 of each order
is stochastic.

e (Case 2: five production orders are scheduled in seven shop floors performing
processes 1 to 7 respectively. The processing time of process 5 of each order
is stochastic.

e (Case 3: seven production orders are scheduled in seven shop floors performing
processes 1 to 7 respectively. The processing time of process 5 of each order
is stochastic.

Processes in each case should be performed based on the specified processing
sequence; the process with lower process number should be performed earlier.
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The relevant data for the three cases are shown in Tables 4.1-4.3 respectively. In
these tables, the first column (Order no.) shows the order number, the ‘Arrival
time’ column shows the arrival time of each order, the ‘Due time’ column shows
the due time of each order, and other columns show the mean of processing time
of each production process in the corresponding assembly line. For example, the
value 4 in the second column and the row of ‘Order 1’ represents that the average
processing time of process R, the first process of order 1, is 4 units of time in
assembly line 1 of shop floor 1. Moreover, in the investigated factory, shop floors
1 and 5 are both composed of two assembly lines, and other shop floors comprise
only one assembly line.

In this chapter, the order scheduling solutions for all cases of the different
experiments are shown in Fig. 4.7. Based on the order scheduling solutions and
the processing time of each process, the Gantt chart of processes being performed
in different assembly lines can be obtained. Figure 4.8 shows the Gantt charts for

Table 4.1 Data for case 1 of experiment 1

Order Processing time of process in the corresponding Arrival Due
no. assembly line time time

Shop floor 1 Shop Shop Shopfloor5 Shop

floor2 floor3 —— floor?7
Line 1 Line 2 Line 1 Line2

Order1 4 6 2.5 2 5 5.5 2 0 17
Order2 3 4.5 / 4 4 4.5 1.5 0 18.5
Order3 6 7 3 / 5.5 6.5 2.5 2 27
Order4 5 5.5 / 3 5 6 2 4 24
Order5 5.5 7 4 / 6 6.5 2 8 31
Table 4.2 Data for case 2 of experiment 1
Order Processing time of process in the corresponding Arrival Due
no. assembly line time time

Shop floor 1 Shop Shop Shop Shop floor5 Shop Shop

— floor floor floor ——— floor floor

Line Line 2 3 4 Line Line 6 7

1 2 1 2
Order1 3 2.5 2.5 1.5 / 5,5 5.5 1 05 O 14
Order2 4 3 / 4 1.5 4 4.5 1.5 1 0 20
Order3 55 5 45 / / 6 6.5 1 1.5 0 24
Order4 6 5.5 / 3 2 5 6 1.5 1.5 5 28
Order5 2 1.5 / / / 25 3 0.5 1 8 24
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Table 4.3 Data for case 3 of experiment 1

Order  Processing time of process in the corresponding Arrival Due
no. assembly line time time

Shop floor 1 Shop Shop Shop Shop floor5 Shop Shop

floor floor floor ———— floor floor

Line Line 2 3 4 Line Line 6 7

1 2 1 2
Order1 3.5 4 4 35 / 5 5 1.5 1 0 24
Order2 5 4.5 / 4 1.5 4 4.5 1.5 1 0 18
Order3 4 4.5 45 |/ / 6.5 6 1 1.5 0 26
Order4 5.5 5 / 2 3 55 6 2 1.5 7 35
Order5 2 2 1.5 / 2 25 2 05 1 10 27
Order6 4.5 4.5 / / 25 25 1 1 16 33
Order7 3 35 / 3 / 3 2 1 1.5 20 32

Table 4.4 Order scheduling results for case 1 of experiment 1

Order 1 Order 2 Order 3 Order 4 Order 5

Mean of 16 18.07 26 23.5 30
T 5 completion time
2 2 Satisfaction 99.00% 99.01% 99.00% 99.09% 99.00%
%E level
a Throughput 16 18.07 21.5 19.5 21
time
Mean of 16 18 24.5 26.5 30
< © completion time
f—j § Satisfaction 99.00% 99.09% 97.50% 75.00% 99.00%
© “E’ level
o
Throughput 16 18 20.5 22 20
time

case 1 of experiment 1 based on the solutions generated by the proposed method
and the practical method. For other cases in this chapter, the Gantt charts can be
found in Appendix 2.

The order scheduling results of the three cases are shown in Tables 4.4—4.6.
Consider the order scheduling results of case 1 shown in Table 4.4. According to
the results of the proposed method, the mean of the completion time of each order
is equal or very close to the desired due time and the total satisfaction level of all
orders is 99.02%. The total satisfaction level of the practical method is 5.1% less
than that of the proposed method because the completion time of order 4 has
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Gantt charts for Case 1 of Experiment 1 (Proposed method)
Line 1 of shop

floor 1 | Fn | R | Fs1 |
123456 7 8 9101112131415
Line 2 of shop
floor 1 Fon | il |

12 3 45 6 7 8 9 101112
Shop floor 2 Ry5 Rso Rs

123 45 6 7 8 9 10111213 14151617 18 19

Shop floor 3 | Ris | Feg | Faa
) 123 456 7 8 9 10111213 14 15 16
Line 1 of shop | Ry | Raa | Rss |
floor 5
12 3 45 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27 28
Line 2 of shop | Rig Raa
floor 5 123 456 7 8 91011121314 151617 18 19 20 21 22

Shop floor 7 Ris ,R_zsl [ Rus | Ras | [ Ass |

12 3 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Gantt charts for Case 1 of Experiment 1 (Practical method)

Lineﬂlgrf 1shop | Ry | R4 | Rs1 |

12 3456 7 8 9 10111213141516
R21 | R41 |
123456 7 8 9101112
Shop floor 2 Ri» | R, | | Rsp |
1 23456 7 8 9 10111213 14 15 16 17 18 19 20

Line 2 of shop
floor 1 |

Shop floor 3 | Ris | Rog | Ras |
L £ sh 12 3 45 6 7 8 910111213 141516
ine 1 of shop
floor 5 N | Raq | Rsq |
12 3 45 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28
Line 2 of shop | R | R
floor 5 hd had

123 45 6 7 8 9 1011121314 1516 17 18 19 20 21 22

Shop floor 7 Pis ,H_25| | Fas | Fas | | Fss |

123 456 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30

4.8 Gantt charts for case 1 of experiment 1.

about 2.5 time units of tardiness and its satisfaction level is only 75%. Moreover,
the total throughput times generated by the proposed method and the practical
method are 96.05 and 96.5, respectively. Obviously, the performance of the
proposed method is better in this case.

As shown in Tables 4.5 and 4.6, the satisfaction levels of order 1 in cases 2 and
3 are both less than 79% in the practical method, while the satisfaction levels of
all orders in the proposed method are greater than 97.80%. Moreover, the total
throughput time of the proposed method outperforms that of the practical method
in case 2. Regarding the total throughput time in case 3, the result of the proposed
method is slightly inferior to that of the practical method. This is because the
proposed method generates the scheduling result from the viewpoint of global
optimization. These three cases demonstrate that the proposed method can obtain
better optimization performance than the practical method from industrial
practice.
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Table 4.5 Order scheduling results for case 2 of experiment 1

Order1 Order2 Order3 Order4 Orderb

Mean of 14 20 23 28 24
completion time

Satisfaction level 97.80% 99.00% 99.00% 99.00% 99.00%

Proposed
method

Throughput time 14 15 23 20 10.5
_ Mean of 16.5 18.5 23.5 26 19.5
33 completion time
E % Satisfaction level 75% 97.50% 99.09% 97.00% 94.50%
a € Throughputtime 16.5 18.5 21 21 11.5

Table 4.6 Order scheduling results for case 3 of experiment 1

Order 1 Order2 Order3 Order4 Order5 Order6 Order?7

Mean of 23.5 17 25 3458 26.57 3257 315
completion

time

Satisfaction 99.09% 99.00% 99.00% 99.58% 99.57% 99.57 99.09%
level

Throughput 19 17 25 27.58 16.57 16.57 1"
time

Proposed
method

Mean of 19.5 16.5 22.5 28.5 23.5 29.5 31.5
completion

time

Satisfaction 78.66% 98.50% 96.50% 93.50% 96.50% 96.50% 99.09%
level

Throughput 19.5 16.5 19 21.5 13.5 13.5 11.5
time

Practical
method

4.5.2 Experiment 2: order scheduling with uncertain order

In each case of this experiment, some existing orders and an uncertain order are
scheduled. The data for case 1 and case 2 are similar to cases 1 and 2 of experiment
1 respectively, except that order 5 is uncertain. In cases 1 and 2 of experiment 1,
order 5 arrives on time 8. But, in this experiment, order 5 may come on time 8
with probability 0.3, or it may not come at all. That is, two different production
events may occur in each case. If order 5 comes, five orders will be scheduled;
otherwise only four orders are scheduled.

In the proposed method, two possibilities of each case are scheduled respectively.
If order 5 does not come, based on the proposed method, the order scheduling
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results of the two cases are shown in the ‘Proposed method’ rows of Tables 4.7—
4.8 respectively. In each case, the total satisfaction level is equal to the probability
expectation of the satisfaction levels under different possibilities. Take case 1 as
an example. If order 5 comes, the total satisfaction level of 5 orders is 99.02%. If
it does not come, the total satisfaction level of four orders is 99.03%. Therefore,
the total satisfaction level of case 1 is 99.02%-0.3 + 99.03%-0.7 = 99.027%.
Similarly, we can obtain that the total satisfaction level of case 2 is 98.575%, and
the total throughput times of cases 1 and 2 are 81.37 and 76.34, respectively.

In the practical method, the uncertain order, order 5, is treated as never arriving.
The order scheduling considers only four orders and the scheduling results of the
two cases are shown in the ‘Practical method’ rows of Tables 4.7-4.8, respectively.
The total satisfaction levels of cases 1 and 2 are 92.65% and 91.90%, respectively.
The total throughput times of the two cases are 82.5 and 80.1 respectively, which
are inferior to the results from the proposed method. It follows from the discussion
above that, in this experiment, the order scheduling results generated by the
proposed method are also better than those generated by the practical method
when four orders are scheduled.

Table 4.7 Order scheduling results for case 1 of experiment 2

Order 1 Order 2 Order 3 Order 4

s Mean of 16 18.07 26 235
23 completion time

% % Satisfaction level 99.00% 99.01% 99.00% 99.09%
& €  Throughput time 16 18.07 215 19.5

_ Mean of 16 18 24.5 26.5
33T completion time

g % Satisfaction level 99.00% 99.09% 97.50% 75.00%
a € Throughput time 16 18 20.5 22

Table 4.8 Order scheduling results for case 2 of experiment 2

Order 1 Order 2 Order 3 Order 4
3 Mean of 14 20 21.7 28
@ E completion time
% Satisfaction level 97.80% 99.00% 97.70% 99.00%
@ €  Throughputtime 14 15 21.7 23
_ Mean of 16.5 18.5 23.5 25
873  completion time
S £ Satisfaction level ~ 75.00% 97.50% 99.09% 96.00%
& € Throughputtime 16.5 18.5 21 20
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4.5.3 Experiment 3: order scheduling with uncertain
arrival times

In this experiment, the arrival times of some orders are uncertain. The data for
case 1 and case 2 are also similar to cases 1 and 2 of experiment 1, respectively,
except that two orders have uncertain arrival times. In case 1, the arrival time for
order 4 is random: either time 4 with probability 0.2 or time 5 with probability 0.8.
In case 2, the arrival time for order 3 is random: either time 0 with probability 0.3
or time 3 with probability 0.7.

In the proposed method, the uncertain arrival time should be considered
according to all its possible arrival times. The above two cases both have two
possible circumstances. For each case, the scheduling results of one possible
circumstance have been presented in experiment 1. The scheduling results of
other possible circumstances are shown in the ‘Proposed method’ rows in
Tables 4.9—4.10. Taking case 1 as an example, the total satisfaction level is 99.02%
if the arrival time of order 4 is time 4, and the total satisfaction level is 98.92% if
its arrival time is time 5. Therefore, the expectation of the total satisfaction level
of case 1 is 98.94%. Similarly, the total satisfaction level of case 2 can be obtained,
which is 98.64%.

In the practical method, the uncertain arrival time of the order is replaced by its
mean. That is, the arrival time of order 4 in case 1 is considered as 4.8 and the
arrival time of order 3 in case 2 is considered as 2.1. Their scheduling results are
shown in the ‘Practical method’ rows of Tables 4.9-4.10. The total satisfaction
levels of the two cases are 93.92% and 95%, respectively. These results are also
worse than those generated by the proposed method.

In the above experiments, the order scheduling performance generated by the
proposed method outperforms that of the practical method because the former
meets the production objectives better. The optimized results in this chapter are
obtained based on the following parameter settings: the population size and the
maximum number of generations of the proposed GA are 100 and 50, respectively;

Table 4.9 Order scheduling results for case 1 of experiment 3

Order 1 Order 2 Order 3 Order 4 Order 5

Mean of 16 18.07 26 23.5 29.5
completion time

Satisfaction level 99.00% 99.01% 99.00% 99.09% 98.50%

Proposed
method

Throughput time 16 18.07 22 15.5 19.5
_ Mean of 16 18 24.5 26.5 30
S8 g completion time
g % Satisfaction level 99.00% 99.09% 97.50% 75.00% 99.00%
& € Throughputtime 16 18 20.5 18.5 20
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Table 4.10 Order scheduling results for case 2 of experiment 3

Order 1 Order 2 Order 3 Order 4 Order 5

Mean of 14 19.5 23 26.07 24

- o

2 o completion time

S ﬁ Satisfaction level 99.00%  99.09%  99.00%  98.07%  97.80%
@ E Throughputtime 14 19.5 20 21.07 13.5

_ Mean of 16.5 18.5 23.5 26 19.5

8 T completion time

'g % Satisfaction level 85% 98.50%  99.09% 98.00%  95.50%
oS Throughputtime  16.5 18.5 20.5 21 11.56

the tournament size k=2; the objective weight y=1; and the proportional
parameters k, and &, in Eq. 4.9 are 0.01 and 0.1, respectively.

4.6 Conclusions

This chapter has dealt with a multi-objective order scheduling problem at the
factory level, where uncertainties are described as continuous or discrete random
variables. The objectives were to maximize the total satisfaction level of all orders
and minimize their total throughput time. These are particularly helpful to meet
the due dates of orders and reduce the WIP in each shop floor.

Uncertain processing time (including beginning and completion times) has
been derived from probability theory. The GA with a novel process order-based
representation has been developed to explore order scheduling solutions.
Experiments have been conducted to evaluate the effectiveness of the proposed
algorithm. The experimental results showed that the proposed algorithm is
substantially better than the practical method and can solve the addressed problem
well. Our further research will investigate the uncertainties on scheduling in the
level of job shop or assembly line, such as unpredictable machine breakdown,
operator absenteeism, and shortage of materials.
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4.9 Appendix 1: nomenclature

The following notations are used in developing the mathematical model of order
scheduling discussed in this chapter:

A, arrival time of order P,

B, beginning time of process R,

C, completion time of order P,

Ci/., completion time of process R,

D, due date of order P,

ET, transportation time between assembly lines processing process R, and its
following process

L, lth assembly line of shop floor S,

P, ith production order (1 <i<m)

R, Jjth production process of order P,

SAL,,  set of assembly lines which can perform process R,

S, kth shop floor

SL, total satisfactory level which is used to evaluate the grade of the due

dates of all orders being met
SP(Ri/,,), set of the preceding processes of process R,

Ty processing time of R, on assembly line L,

1T, expected value of total throughput time of all orders

Xo» indicates that if process R, is assigned to assembly line L , X, is equal to
u i ki i

1, otherwise it is equal to 0.

© Woodhead Publishing Limited, 2013



Optimizing apparel production order planning scheduling

410 Appendix 2: Gantt charts

The following Gantt charts show the results generated by the proposed method
and the practical method in different cases of 3 experiments. For other cases in
this chapter please refer to Section 4.5.

Gantt charts for Case 2 of Experiment 1 (Proposed method)

77

Line 1 of
shop floor 1 ki T S T T
. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Une20f ™ ™ Ry — | R, | , Ay, [fa]
ShOp f|00|’1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Shopfloor2 | | P |, |, By
T2 8 4 5 6 7 8 9 10
Shopfloors [ Fs] [ R | [, A ],
1 2 3 4 5 6 7 8 9 10 11 12 _13 14 15 16 17
Shopfoord . , . ., . . |Fs],
Line 1 of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
shop floor 5 e B s
Line 2 of 1 2 3 4 5 6 7 8 9R1O 112 13 14 15R16 17 18 19 20 -
shop floor 5 A AL S L. S M |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Shopflooré. .,  [Rel, ., Fs oA Foel [P ],
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Shopfloor7 . . M i I I 4 iz
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Gantt charts for Case 2 of Experiment 1 (Practical method)
h""}f1°f| B L[ A ]
S OP oor 1 1 2 3 4 5 6 7 8 9 10 11
bne2of s T — A, 1[m], |
shop floor 1 —— 3¢5 5 76
Shopfloor2 [, ARe | , [, A , ]
1 2 3 4 5 6 7 8 9 10 11_12
Shopfloor8 [ , Rs , [Rg], [ ,As, |
1 2 3 4 5 6 7 10 11 12 13 14
Shopfloor4 . . 1R, ., Faa
Linetof ' 2 8 4 5 6 7 8 10 11 12 13 14 15 16
shop floor 5 P T T T S T SR S |. L Fs | Ros | |
line2of ' 2 38 4 5 6 7 8 9 10 1 12 13 14 15 16 17 16 19 20 21
R R, R; R, |
hop floor 5 R L R L85, P R
shop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Shopflooré . . . ., . . . ., Fap L Ay |,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Shop floor 7 P Fr| Rz . Ry |, | Ao
T2 5 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Gantt charts for Case 3 of Experiment 1 (Proposed method)

Line 1 of |

shop floor 1

Rs

Ra

1

2 3

|
4

L
6 7 8

Line 2 of

shop floor 1
Shop floor 2

9 10 11 12 13 14 15

A

Ly
16 17 18 19 20 21 22 23 24 25 26
Rey il

o —
18 19 20 21 22 23 24 25 26

Shop floor 3

Shop floor 4

Line 1 of
shop floor 5
Line 2 of
shop floor 5

Shop floor 6

Shop floor 7

4 5 6 7 8 9 10 11 12 13 14 15 16 17
| Ry Rz | Rs2 |
o
12 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
P 1 Be JRe ] Firs
1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Ry R Rss
L ira -
1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
| RAss Ris L s
12 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Ras Fes FAss Rys

1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
R P [P o], i [FrfFed Fis ]
1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
R - B [Bo] [ Ay
1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

© Woodhead Publishing Limited, 2013



78 Optimizing decision making

Gantt charts for Case 3 of Experiment 1 (Practical method)
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Gantt charts for Case 2 of Experiment 2 (Proposed method)
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Gantt charts for Case 1 of Experiment 3 (Practical method)
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Optimizing cut order planning in apparel
production using evolutionary strategies
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Abstract: Cut order planning (COP) plays a significant role in managing the
cost of materials. COP seeks to minimize the total manufacturing costs by
developing feasible cutting order plans with respect to material, machine and
labour. In this chapter, a genetic optimized decision-making model using
adaptive evolutionary strategies is devised for COP. Four sets of real production
data were collected to validate the proposed method. The experimental results
demonstrate that the proposed method can reduce both the material costs and
the production of additional garments while satisfying time constraints.
Although the total operation time used is longer than that using industrial
practice, this is outweighed by the benefits of reduction in fabric cost and
extra garments.

Key words: evolutionary strategies, optimization, decision support, resource
utilization.

5.1 Introduction

In today’s apparel industry, fashion products require a significant amount of
customization due to differences in body measurements, diverse preferences for
style and replacement cycles. It is necessary for apparel supply chains to be
responsive to the ever-changing fashion markets by producing smaller jobs in
order to provide customers with timely and customized fashion products. In
apparel supply chains, fabric is the single largest material in the cost of a garment;
approximately 50-60% of the manufacturing cost can be attributed to fabric.
Apart from the fabric, labour and factory operation costs have also been
continuously increasing while the selling price of apparel merchandise has been
falling. Adopting quick response strategies to manufacture and deliver apparel
products to the retailers while maximizing the fabric utilization rate (in other
words, minimizing the material cost) and minimizing the labour and manufacturing
cost becomes a great challenge to apparel manufacturers.

5.1.1 Cut order planning

Cut order planning (COP) is the first stage in the production workflow of a typical
apparel manufacturing company, as shown in Fig. 5.1. It is a planning process to
determine how many markers are needed, how many of each size of garment

81
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Activities Output
Ort_jgr »| Customer orders

receiving

Cut order - Cut order

planning v plans
Mark.er » Markers

planning

Spreading > Fabric lays
Cutting » Fabric cut-pieces
Sewing

5.1 Schematic workflow of activities of a fabric-cutting department
of a typical apparel manufacturing company.

should be in each marker, and the number of fabric plies that will be cut from each
marker. Marker is the output of the process of marker planning, which follows cut
order planning. Figure 5.2 illustrates a marker planning process using commercial
computing to arrange all patterns of the component parts of one or more garments
on a piece of marker paper, as shown in Fig. 5.3. Following marker planning,
the third operation is fabric spreading, the process by which fabric pieces
are superimposed to become a fabric lay on a cutting table, as shown in Fig. 5.4.
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5.3 Marker planning process using commercial computing software.

The last operation is fabric cutting. Garment pieces are cut out of the fabric lay
following the pattern lines of the component parts of one or more garments on the
marker, and then transported to the sewing department for assembly into a finished
garment.
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7
_ 7

N

Fabric ply

5.4 Fabric lay composed of fabric plies after spreading.

COP, the most upstream activity, plays a significant role in affecting the material
cost and the manufacturing cost in the cutting department. Based on the
requirements of customer orders in terms of style, quantity, size and colour, it
seeks to minimize the total production cost by developing cutting orders with
respect to material, machine and labour. In the cutting room, after the completion
of COP and marker planning, spreading and cutting are then executed, and the
time and costs required for these two operations will be affected by the quality of
the cut order plans being developed. A good plan can improve the rate of fabric
utilization.

The COP usually begins with a retail order comprising the quantities, sizes and
colours of garments to be manufactured. The following example demonstrates
how a cut order plan is derived. For simplicity, only the quantities of garments and
sizes are considered. The details of the customer order are as follows:

Size Small Medium Large

Quantity (in pieces) 300 600 400

The constraints on fabric lay dimensions are:

e Maximum number of plies for each lay: 75
e Maximum number of garments marked on each marker: 5

The maximum number of garments produced per lay is 5 x 75 = 375 pieces and
the number of garments required by the customers is 300 + 600 + 400 = 1300
pieces. Therefore, the theoretical minimum number of lays equals 1300/375 =
3.47. This gives a practical minimum of four lays to cut the order. If the order is
to be cut at the lowest cost, the lays need to be as long and deep as possible. One
of the possible solutions is:
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Small Small Small Small Small Lay 1: 60 plies

Medium Medium Medium | Large Large Lay 2: 75 plies

Medium Medium Medium | Large Large Lay 3: 75 plies

Medium Medium Medium | Large Large Lay 4: 50 plies

An alternative to lay 1 is to have a four-garment marker and to spread 75 plies.
This would reduce the cutting cost, but was rejected because of the fabric
cost, since there would be 15 more plies and high fabric end loss occurring
on both ends of each fabric ply (more plies mean greater end loss). This solution
has demonstrated that sizes Medium and Large are in the ratio of 3:2. The marker
for lay 2 can also be used for lays 3 and 4, thus reducing the costs of marker
making.

This example shows that numerous other possible COP solutions can be
generated. The COP problem becomes more difficult when the numbers of
garments and sizes increase. The problem will be further complicated when
the parameter of colour is also considered in the plan. In addition, labour is
needed to operate the spreading and cutting machines. As the fabric cut pieces
will be transported to the sewing room for garment assembly, COP needs to
consider the fulfilment of the demand quantity of cut-piece from the downstream
sewing room.

Current industry approaches in generating the COP range from manual ad hoc
procedures by cut order planners to commercial software. However, many apparel
manufacturers are still using rather primitive methods; they rely mainly on the
expertise and subjective assessment of the planners to produce the plans.
Therefore, the optimal COP cannot always be guaranteed. Commercial COP
software is available for use, but the COP heuristics are usually kept confidential
by the proprietors. Apart from generating a COP with the right quantity of
garments with the right size and colour, there is little room for minimizing
material, machine and labour costs.

This chapter attempts to offer near-optimal COP solutions to reduce both
materials and labour and machine costs using a genetic optimization model based
on adaptive evolutionary strategies. The objective is to assist the production
management of the apparel industry in the COP decision-making process and
improve the quality of the decisions. It has been pointed out that the COP problem
is NP-completeness in nature and it is feasible to use a heuristic approach to
solve the problem accordingly by using constructive heuristics with intuition start
and fine-tuning the solution with another improvement heuristic (Jacobs-Blecha
et al., 1998).
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5.1.2 Evolutionary algorithms

Recently, evolutionary algorithm (EA)-based solution approaches have been
proposed for solving different types of optimization problems in different
industries. EAs mimic the behaviour of chromosomes in the evolution of living
organisms so as to derive solutions for real-world optimization problems. Fogel
et al. developed a correspondence between natural evolution and the scientific
method (Fogel et al., 1966). In nature, individuals serve as hypotheses regarding
the general perception of their environment. Their behaviour is an inductive
inference regarding the unknown aspects of that environment. Validity is
demonstrated by their survival over successive generations, during which
individuals become successively better predictors of their surroundings.

In the same sense, in evolutionary algorithms, each individual can be viewed as
a point in the search space of candidate solutions for the optimization problem. The
fitness of an individual is defined by how well that individual solves the given
problem. Individuals with progressively higher fitness will be obtained by evolution
over successive generations. In other words, the adaptive change of chromosomes
is explained by the principle of natural selection, and only those chromosomes that
are best adapted to their environmental conditions are able to survive, i.e. the
survival of the fittest. EAs thus constitute an efficient mechanism for finding highly
fit individuals in optimization problems, and are regarded as global optimization
tools for complex real-world problems (Yao, 1999). Such EAs are considered as a
general concept for many real-world applications that are often beyond solution
using traditional methods (Béck and Schwefel, 1993; Bick et al., 1997).

Porter reviewed the various EAs which were developed for solving industrial
optimization problems in the 1990s (Porter, 1998a). These EAs include genetic
algorithms, non-adaptive and adaptive evolution strategies (ESs). EAs have gained
more and more popularity in both research and application areas as they provide
near-optimal or optimal solutions at the end of the optimization process and thus
facilitate the choice of the best solution. In addition to their advantages in offering
optimal solutions, EAs have been acknowledged for their flexibility and ease in
hybridizing with domain-dependent heuristics in the field of industrial engineering
and many other applications (Goldberg, 1989; Powell and Skolnic, 1993; Surrey
et al., 1995). In particular, there are successful applications of evolution strategies
using chromosomes with binary strings to synthesize control policies for complex
manufacturing systems (Porter, 1998b; Porter and Merzougui, 1997).

Other successful applications of EAs in marketing decision support systems for
product line design (Alexouda, 2005), mechanical design components (Girand-
Motean and Laton, 2002), dynamic shop floor scheduling problems (Késchel
et al., 2002), material flow in supply chains (Vergara, 2002), web searching (Lee
and Tsai, 2003), competence set analysis (Huang et al., 2006) and a detailed
review on the area of other manufacturing applications in relatively recent years
can also be found in Pierreval ef al., (2003).
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Non-adaptive ESs perform well only after careful choice of probability of
crossover and probability of mutation. Adaptive ESs provide a promising
optimization tool since they require no a priori selection of mutation or crossover
probabilities. In adaptive ESs, the genetic mutation operator has a self-adapting
mechanism introduced by Porter (Porter, 1998b). The only difference between non-
adaptive binary ESs and adaptive binary ESs is that the probability of mutation, P_,
is not pre-specified in the adaptive case. In addition, there are two major selection
schemes in ESs, namely (u+A) and (u,A), where u is the population size (which is
the same as the number of parents) and A (> u) is the number of offspring generated
from u parents. In (u+A) ESs, the u fittest individuals from the pool of (u+A)
candidates are selected to form the next generation. In (u,A) ESs, the u fittest
individuals are selected from only the A offspring to form the next generation.
Experimental findings indicate that the (u+ A) strategy performs as well as or better
than the (u,A) strategy in many practical cases (Gehlhaar and Fogel, 1996). Thus,
the (u+A) strategy was used in the selection for the adaptive ESs in this chapter. In
addition, the promising performances of adaptive ESs over non-adaptive
evolutionary algorithms are shown in their effectiveness in solving various problems,
such as production planning (Porter and Leung, 1998), flow-shop sequencing
(Zaheh and Porter, 1998), process planning in automated manufacturing systems
(Porter and Leung, 1998) and the design of manufacturing systems (Tong, 2002).

The objective of COP is to minimize costs, including the costs of fabric, labour
and machine operation. Indeed, the more garments marked in each of the lays, the
more efficiently the fabric is used, though this increases the processing time involving
the cutting machine and the labour working hours since more garment patterns need
to be cut. Thus, a tradeoff to minimize costs exists between fabric cost and labour/
machine operation cost under a pre-defined time frame. Solving such a problem by
humans with an optimal solution thus becomes unfeasible. Jacobs-Blecha et al.
stated that the COP problem is of an NP-complete nature (Jacobs-Blecha ef al.,
1998). In this chapter, the use of adaptive ESs to solve the COP problem is proposed
and a new encoding method with a shortened binary string is devised.

The outline of this chapter is as follows. Section 5.2 describes the model
formulation of the COP problem. The genetic COP optimization procedures are
described in Section 5.3. The proposed method is demonstrated by an illustrative
example and various experiments in Section 5.4, in which the genetically
optimized results are compared with those implemented by industrial practice.
Finally, conclusions and recommendations for future work are outlined.

5.2 Formulation of the cut order planning (COP)
decision-making model

In order to build the decision-making model for the COP, the following notations
are addressed:

Gaﬁ = number of garments in lay o with size 8
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P = number of plies in lay a with colour y
A = order quantity for size 8 with colour y

Qi;y = plan order quantity in lay « for size 8 and colour y

¢_ = maximum fabric length per lay

L .. = estimated maximum number of lays in the cut order plan
H = maximum allowed ply height

H:: = minimum required ply height if any

Y = fabric yield rate per dozen of garments

¢ = fabric end allowance per ply

U, = fabric utilization per lay

C, = fabric cost per metre

C, = labour cost per hour

C, = electricity cost per kilowatt hour

T, = cutting time per garment (min)

T, = spreading time per metre (min)

T, = preparation time per lay (min)

7= demand time constraint from the sewing room (min)
W = cutting machine operation (Watts)

W, = spreading machine operation (Watts)

I', = total fabric cost for the cut order plan

I', = total labour cost for the cut order plan
I',, = total machine cost for the cut order plan
I" = total cost for the cut order plan

@ = fitness of the cut order plan

Given a customer order consisting of certain quantities of garments with sizes =
1,2,...,S and colours y = 1,2,. . .,C, a certain number of fabric lays o= 1,2,...,L is
determined for spreading and cutting. In each of the lays o= 1,2.. . .,L being cut, the
number of garments G , for each size B=1,2,.. .,S and the number of plies P, for
each colour y=1,2,. C is determined. Hence, the quantity of garments allocated for
a particular size and paﬂicular colour in a particular lay is the product of Gaﬁ xP_and
denoted as Qaﬂy (a=12,...L; p=12,...S;y=1,2,. ..C). In addition, for each of
the cut order plans, the performance is evaluated in terms of the cost functions.
Equation 5.1a explains that the total material cost used for a production order
depends on the total number of garments and fabric ply spread, which is determined
by the cut order plan, the fabric length of each garment used (calculated by the fabric
yield dozen per dozen divided by 12), and the fabric end allowance of each of the lays.

S C C
S6,LuelSr, <>}

y=1 y=1

L5

S

«* 2 G

B=1

[5.1a]
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Equation 5.1b demonstrates the overall labour cost involved in a cut order plan,
including the cost of the cutting worker who operates the cutting machine to cut
the total number of garments in the plan, and the cost of the spreading worker who
operates the spreading machine to spread the total fabric length determined by the
total number of garments and plies according to the plan. As labour force is
necessary to load the fabric to the spreading machine and remove the cut-pieces
from the cutting machine after cutting, the amount of labour cost, which is proved
to be proportional to the quantity of fabric lays, is considered in Eq. 5.1b.

(,1 EGaﬁ+€)

L S

[5.1b]
FL= il Ko o xC,-
In Eq. 5.1c
L
ElgGaﬂTCW ( 1 EG +szW [5.1¢c]
Tu=—"" 6:)><1000 *Ce

the machine cost spent is based on the operation cost of both spreading and cutting
machines in terms of machine working time and the specific operation Watt used.
The total cost expense is

r=r +T +T, [5.1d]
and hence the fitness is

o 10000 [5.2a]
r

However, if any of the constraints 5.3, 5.4, 5.5 or 5.6 is violated, the fitness
will be

®=0. [5.2b]

The number of garments Gaﬁ (a=12,...,L; =1,2,...,S)and the number of plies
Pay (a=1,2,...,L;y=1,2,...,C) are subject to the following constraints:

C

H,sYP <H_  Va=12..L [5.3]
y=1

S Y

3G, U, —+esL Va=12..,L [5.4]

& 12

L

>Q,, =4, VB=12..8y=12..C [5.5]

© Woodhead Publishing Limited, 2013



90 Optimizing decision making

L S C S Y
T,L+Y EGaﬁTC+( PayzGaﬁE+s)Ts

a=1| =1 =1 B=1

Va=12,.,L;=12,...,S;y=12,...,.C

=T

[5.6]

C
where the total number of plies EP{W for all colours in each of the lays o is
y=1

constrained by the physical cutter height H and the desired minimum number

max

S
of plies H__ . The total length for the number of garments used E G,U, % +€in
B=1

each lay a cannot exceed the cutting table length as denoted by £ . Moreover, in
L .

the case of lay a=L_, that the total order quantity E Q(x/iy has not yet completed
a=1

the order quantity Aﬂy pB=12,...S;y=12,...,C),this order plan fails and hence

fitness equals zero as in Eq. 5.2b as it violates the inequality 5.5. Lastly, the total

time used in cutting, spreading and preparation that constitutes the labour time as

illustrated in Eq. 5.1b cannot exceed the demand time instructed from the sewing

room, T.

Thus, a genetic cut order plan is developed to find out the number of garments
Gaﬁ for each size f = 1,2,...,S and the number of plies Pay for each colour y =
1,2,...,Cineach of the lays o= 1,2,. . .,L by adaptive evolution strategies so as to
optimize the cost function in Eq. 5.1d with highest fitness in Eq. 5.2a.

5.3 Genetic COP optimization

In this section, two possible encoding methods are elaborated and a new encoding
method which can shorten the binary string is demonstrated. Procedures for
generating COP with an illustrative example and a genetic COP optimization
process will be presented. In order to minimize the cost function I', a cut order
planner needs to determine the number of lays L that the plan requires, as well as
the number of garments G, for each size 8 and the number of plies P, for each
colour yin each fabric lay a. The genetic cut order plan induction is to mimic how
the industrial practice figures out the number of garments and plies in each lay for
the plan using adaptive evolution strategies. Since the length of the binary string
needs to be fixed for the evolutionary process with adaptive ESs, the estimated
maximum number of lays, L, which is the approximate maximum number of
lays to complete the order, is introduced. Once the garment quantities of various
sizes and colours required by the order are fulfilled in lay L (which L<L__ ), L
would be the optimum number of lays used in completing the COP. However, in
case of the binary string that the actual order cannot be completed until lay L__,
zero fitness will be assigned to that particular binary string as inequality 5.2b as it
violates inequality 5.5.
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5.3.1 Encoding method of the binary string

In the genetic synthesis of the binary string representing the cut order plan, two
possiblekinds of encoding methods are considered due to search space discrepancy.

In encoding method 1, each binary string consists of L_ . (S + C) binary
sub-strings. Each binary sub-string represents the number of garments in S for
different sizes, and the number of plies in C for different colours for a particular
fabric lay a (a = 1,2,. . .,L). As each number of garment and ply could be chosen

from the range H_ ] respectively, the total number of

min® ~ T max;

LlZ(fmax —s)] and [H
U,y

combinations, N__ . is used for the number of garments and plies in the plan
represented by the binary string as

S

(H -H )CL.‘W'_ [5.7]

max min

12(¢,,.-¢)
U, Y

-1

com]

In encoding method 2, the binary string is shortened with only L . and binary
sub-strings that comprise

NmmZ = (H - H )Lmax' [58]

max min

different combinations. In this method, the great number of sizes and colours
involved in the computing time thus will not hinder evolutionary progress
in searching for the optimized solution. Consider the examples with

12(¢,, -¢)
V%

a

-1=10,H __-H . =10 in the following four cases:

Case 1: S=1,C=1,L . =1

X

Case 2: 5=2,C=1,L =1
Case 3: 5=2,C=2,L =1
Case 4: S=2,C=2, L =2;

the total number of combinations for encoding method 1, N, and encoding
method 2, N_ . as well as the number of binary sub-strings, can be compared, as
shown in Table 5.1.

Table 5.1 clearly shows the rapid increase of N with S, C and L, particularly
when the number of lays, L, increases. Nevertheless, the computing time in
searching for the optimized solution within such a huge search space with N is
crucial in the evolutionary progress. In order to evolutionarily generate the
optimized solution with efficient running time, encoding method 2 is used in this

chapter with the encoding details described on the next page.
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Table 5.1 Comparison of the total number of combinations in two different
encoding methods

Case1 Case2 Case3 Case4d

Encoding method 1: binary sub-strings 2 3 4 8
Ny 100 1000 10000 100 000 000
Encoding method 2: binary sub-strings 1 1 1 2

10 10 10 100

com2

The shortened binary string is presented, in which only the specific ply number
P, of specific colour y'is encoded as the binary sub-string for lay « in the binary
string, as shown in Fig. 5.5. Indeed, P, y is selected from the minimum actual

S

order quantity EA o> 0 for the 1st lay and P y (a=23,...,L ) is selected

max
B=1

L-1
th
A, - Qaﬁy) >0 for the L™ lay

a=1

S
from the minimum remaining order quantity E
=

L-1 L-1
(Aﬁy - EQW =( instead when EQaﬁy >A, for each size ). The range of P, is

a=1 a=1

bounded by the physical constraints of the ply height as shown in inequality 5.3,
S

max

and the remaining P, is bounded by [max(1,H_, ),mi EA gy Ho [l When a =1
p=1

S
and [max(l,Hmm),min(E

p=l

,H )] when o > 1. Hence, the adaptive

max

L-1
Aﬁv B E Qaﬁy
a=1
evolution strategy is used to find the P y within the above range for each lay so as
to optimize the cost function as shown in Eq. 5.1d.

5.3.2 Procedures for generating COP

Then the specific ply number P_, is used to generate the garment numbers G, for

sizes B=1,2, ..., S as well as the remaining ply numbers P for the rest of the
colours y=1,2, ..., C except ¥ in each lay. In general, G, s determined by the
P1 ;,’ Pz},’ Pay’ e P(Lmax,_1)y’ PLmaX,y’

L binary sub-strings

5.5 Configuration of binary strings for the cut order planning.
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L
quotient © s 35 shown in Eq. 5.9 that A _EQ dividing P y with the
. L . By apy *
consideration of the remainder N, P

L
Ay-2Q, =0, xP +%, [5.9]

a=1

L L L
where E Q, g =0 when a=1and A oy~ E Qaﬂy =0 when EQaﬁy zA,. Similarly,
a=1 a=1 a=1

the remaining ply number P_ is determined by the minimum quotient min
{@'aﬁy} for #=1,2, ..., S in each particular lay a and colour y derived from

L
Eq. 5.10 when A o EQa - dividing G, for G,>0 with the consideration of the
a=1

remainder N,

A, -20Q,=0,xG +}, [5.10]

L
afy
a=1

L L L
where EQGM =0 when o = 1 and A, —EQW =0 when EQW =A,. The
a=1

a=1 a=1
details of determining the garment number Gaﬁ by the specific ply number P »
and hence the remaining ply number P, are illustrated by the following
example with S=3, C=4, ¥ =4 for both =1 and a =2, as shown in Tables 5.2
and 5.3, respectively.
In this case, for a = 1, if P, }/:P1 ,=7, the number of garments is derived by
Eq. 5.9 such that

@)]ﬁ4 when N <5
G = .
" 0 . +1 when i > 5

184
L
Since EQaﬁy =0and A =1, A, dividing P, gives the quotient ® ,=0 with

a=1

remainder R = 1, G,,=0. Then, G,,=2 and G ,=1 could be drawn similarly to G ,,

Table 5.2 Lay 1 cut order plan for the example withS=3,C=4,y =4

No. of garments G,,=0 G,,=2 G,,=1 iAﬁ No. of ply
Y
B=1
Col Size 1 2 3
1 5 33 4 42 P.=4
2 2 40 29 71 P,,=20
3 0 31 22 53 P,=16
4 1 13 6 19 P.,=7
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Table 5.3 Lay 2 cut order plan for the example withS=3,C =4,y =4

21 22

No. of garments G, =1 G,.=0 G,,=0 i(Aﬁy_gow) No. of plies
a=1

p=1

Col Size 1 2 3

1 5 25 0 30 P,,=5
2 2 0 9 11 P,,=2
3 0 0 6 6 P,.=0
4 1 0 0 1 P, =1

N
i

which is shown in previous lines. According to Eq. 5.10, the number of plies P,
is determined by the minimum quotient min{®’, ﬁy} across the size f=1,2,...,S
in lay 1 for each particular colour y. The orders A, divide the number of garments
Glﬁ for Gl/-} #+ 0 such that

min{@iﬁy} for f=1,2,3 whenR'<5

i min{@’ }+1 for $=1,2,3 when R’ > 5

1By

In drawing the number of plies P, , the quotient ®’, is not included in the set
min{®’, /31} as G, =0and is neglected. Thus P, is determined by the quotient found
by either G, or G ,. As the quotient of A) =33 dividing G ,= 2 gives ©' ,, = 17 with
remainder R" = 1 while A, = 4 dividing G, = 1 gives ©' ; = 4 with remainder
R'=0, P, is equal to the minimum quotient min{®’, m} =4 as remainder R'=0. In
the same sense, P, =20 and P , = 16 can be drawn accordingly.

For o= 2 related to the above example, if P, =Py, =1 the number of garments
G,, is determined by

®2ﬁ4 when R <5

G, = .
0 0 +1 when N > 5

2p4

Then, G,, = 1 as 1 divided by 1 gives the quotient ©, ,=1 with R =0, G, = 0 since
A,-Q,=0aQ, =7x2=14>A, =13, and similarly G,,=0. Next, the
number of plies P, is determined by the minimum quotient min{®’, ﬁy} among the
size B =1,2,3 with actual orders A, divided by the number of garments G, " for
G, p # 0 such that

min{@), }  forf=1,2,3 when® <5

" |min{e,, }+1 forp=1,23 when®'>5

2py
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Drawing the number of plies P,,, G,, and G,, are neglected as they are equal to
zero and thus P, is determined by the quotient found by G, . Hence, P, =5 and
similarly P,,=2 and P_,=0.

The general outline of the proposed approach is presented below:

e Step I: Initialize parameter with population size with u parents and A
offspring.

e Step 2: Randomly produce the binary string that represents P , for a =12,

.., L. and assign a value of the probability of mutation, P_, to each of the
chromosomes in the population.

e Step 3: Decode the binary string and generate the according COP as illustrated
in the previous section.

e Step 4: Evaluate the fitness, @, for each COP with Eq. 5.1 and 5.2 deduced
from parent chromosomes.

e Step 5: Perform the mutation to give birth to A offspring chromosomes.

e Step 6: Repeat Steps 3 and 4 for offspring chromosomes and assign new
probability of mutation to the offspring such that if offspring fitness, @, is
larger or equal to parent fitness, @, then the probability of mutation assigned
to offspring, P’ , is equal to parent’s probability of mutation, P_. Otherwise, if
@’ < ®, then P’_is assigned randomly.

e Step 7: Rank the pool of parents and offspring with the size (1 + A) in terms
of chromosome fitness and select the best u chromosomes to be the next
generation parents.

e Step 8: Repeat Steps 5, 6 and 7 until the target generation number is reached.

5.4 An example of a genetic optimization model
for COP

The proposed genetic optimization model can be illustrated by considering a
particular order with six sizes and nine colours with the order quantity A g (B=
1,2,...,6; y=1.2,...,9) as shown in Table 5.4. Validation was conducted to
compare the results found by the industrial practice using commercial software
and those by the proposed decision-making model using adaptive ESs with a
population size of 100 runs for 100 generations and a population size of 1000 runs
for 1000 generations respectively. The parameters adopted for the evolutionary
algorithm after testing are: u =50, A =100, and mutation rate = 0.003.

In this case, S=6,C=9,Y=2.69m, £=0.06m,{ =10m,H . =0,H  =60and
L .. =20 for inequalities 5.3 to 5.4. Thus, the number of combinations for this
particular example as defined in Eq. 5.8 isN_ _ =(60— 1)=2.61x10%. According
to constraint 5.4, the maximum number of garments per lay in this case is 45. The
demand time constraint from the sewing room is T=100mins. The cost, time, and
power-related parameters are defaulted as C.=$30/m, C =$4.17/h, C,=5$0.27/
kWh, T, =0.173 min/garment, T;=0.0324 min/m, T,=4 mins/lay, W _=3000 Watt,
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Table 5.4 Order quantity for the illustrated example

Size 1 Size 2 Size 3 Size 4 Size b Size 6
Col1 0 28 57 59 39 13
Col 2 1 47 109 103 74 34
Col 3 0 17 27 22 12 5
Col 4 1 74 152 163 116 22
Col 5 0 48 86 96 77 22
Col 6 0 10 15 16 4 1
Col 7 1 48 87 99 62 13
Col 8 0 76 150 161 125 46
Col 9 0 81 212 240 190 101

and W =2000 Watt. Lastly, the fabric utilization, U , for each fabric lay can be
determined based on Fig. 5.6, which demonstrates that in industrial practice the
utilization rate will be improved when more garment patterns can be marked/
drawn on the marker. Indeecsi, the fabric utilization in each lay depends on the

'
ap

total number of garments, EG
B=1
the equations for the utilization are calculated as:

S
. EGaﬁ +1
(1) if ¥ G,, =20, then U, =0.6+ log/HTx log1.97 -
p=1 ’

S
2)if ¥ G,,>20,then U, =0.9+ 0'99"30'9
- (45-20)x| ¥ G, -20)
B=1

used in that particular lay (in this chapter,

1.2

0.8

0.6 1

0.4 4

Fabric utilization per lay

0.2 1

0 LI N N N N I I N N N R N N N N N I N N N O N N I I I R N N N I A N N B B )
1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45
Number of garments used per lay

5.6 Fabric utilization rate versus the number of garments used per lay.
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The evolutionary trajectories in this case for the best-of-generation and generation-
average values of the fitness with the population size of 100 over 100 generations
and population size of 1000 over 1000 generations are shown in Fig. 5.7
and 5.8 respectively. The fitness associated with the best cut order plan has the
values of ®=0.4549 under the 100+100 adaptive evolution strategy and
®=0.4563 under the 1000+ 1000 adaptive evolution strategy. The fitness value of
the best cut order plan decided by the industrial practice achieves ®=0.4444. The
details of the cut order plans with the number of garments and plies in each of the
lays decided by the industrial practice and evolutionarily synthesized are listed in
the Appendix. Table 5.5 lists the detailed results between industrial practice and

0.5
0.45
0.4 + r-v
0.35
0.3
0.25 -
0.2
0.15
0.1

Fitness

Best-of-generation
0.05 ———— Generation-average

o T T T T T T T T T 1
10 20 30 40 50 60 70 80 90 100

Generations

5.7 Best-of-generation and generation-average values of the fitness,
over 100 generations.

0.5+
0.45 —
0.4 +
0.35 A
0.3 1
0.25 -
0.2 +
0.15
0.1 1

Fitness

Best-of-generation
0.05 - ———— Generation-average

T T T T T T T T T 1
100 200 300 400 500 600 700 800 900 1000
Generations

5.8 Best-of-generation and generation-average values of the fitness,
over 1000 generations.
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proposed COP decision-making model using AESs in terms of cost function,
average fabric utilization, average lay length and the total time used to complete
the plan.

The extra quantity of garments generated from the evolutionarily synthesized
plans was 50 and 33 with the population size of 100 over 100 generations and
population size of 1000 over 1000 generations respectively, much lower than the
72 extra garments generated by the industrial practice. Although the total time
used to execute the plan by spreading and cutting was 97.45min (100+100) and
98.59min (1000+1000) when using adaptive ESs, which was longer than
93.75min based on the industrial practice, the extra time used is within 5 min and
acceptable under the demand time constraint from the sewing room (i.e. 100 min).

In addition to the illustrative example with S=6, C=9 as shown above, three
other typical industrial cases with different sizes and colours were considered and
compared in a similar way in terms of fitness, total lay length, extra quantity, and
the total time used to complete the plan. The genetic optimized COPs are listed
in Table 5.6. As illustrated in case 1, the fitness generated by adaptive ESs is
0.8077, which is better than the fitness of 0.7965 generated by the industrial
practice. In addition, the number of extra garments (which may not be accepted by
the customers) dramatically drops from 23 pieces to 3 pieces after using
adaptive ESs. Moreover, the total length of fabric lay used shortens from
418.45m to 412.64m. Indeed, it can be shown that for all remaining cases, 2 to 4,
the COPs found by adaptive ESs are able to achieve higher fitness values with a
smaller extra quantity of garments and shorter total length of fabric lays, as in
case 1; thus the fabric cost can be reduced. On the other hand, the average number
of garments per fabric lay based on industrial practice is smaller than that
generated by adaptive ESs, except in case 1. In case 1, the average number
of garments per lay based on industrial practice is 22, compared with 22 and
21.5 based on adaptive ESs. The average number of fabric plies per lay based on
industrial practice is in general larger than that obtained using adaptive ESs for all
cases shown. Although the total operation (spreading and cutting) time used based
on adaptive ESs is longer than that using industrial practice (except case 1 — ESs:
28.81 min, industrial practice: 29.17 min) in most cases, the longer operation time
can be compensated by the great benefits obtained by reduced fabric cost and
extra quantity of garments planned and produced. In fact, the extra operation
time is acceptable as long as it does not exceed the time constraint requested by
the sewing room.

The results described in this section were obtained by 100+ 100 or 1000+ 1000
adaptive evolution strategies, with each solution completed in less than 1 min and
4min respectively. Nevertheless, humans need at least 15min to figure out the
plan depending on the order complexity with the number of sizes and colours
incorporated. Thus, the evolutionarily synthesized plan introduced in this chapter
is more effective in terms of time and cost in general when compared with the use
of industrial practice in figuring out the plan by trial and error.
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5.5 Conclusions

In the apparel industry, production orders tend to split into smaller orders with
different product features in response to the growing requests for product
customization, which greatly complicates the COP process. In the apparel
manufacturing process, the effectiveness of COP extensively influences the
overall material, machine and labour costs and thus, in turn, is critical to the
overall system performance. In this chapter, a genetic optimization approach
using adaptive ESs is developed to genetically synthesize the cut order plan in
order to complete the order with minimized costs and the consideration of time
constraint pre-determined by the downstream assembly departments. The
production of extra quantities of garments caused by the COP can also be
minimized. It can be shown in the illustrative examples that, since labour and
electricity costs are not as significant as the fabric cost, the evolutionarily
generated plan emphasizes minimizing the fabric cost under the time constraint
set by the downstream sewing room. Even if the labour and electricity costs
become significant, the evolutionarily generated plan will automatically be
adjusted to accommodate such changes so as to minimize the costs. The
evolutionary process of the proposed COP decision-making model can be
improved further. Future research will focus on the combination of ESs and other
heuristic search techniques, such as particle swarm optimization, ant colony
optimization, etc., to improve the convergence speed and global optimization
ability.
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5.8 Appendix: comparison between industrial
practice and proposed COP decision-making
model

Table A1.1 COP generated by industrial practice using commercial COP software

Lay # Cutorder plan

1 # of garment: size 1 - 0, size 2 — 4, size 3 - 6, size 4 - 6, size 5 — 2, size 6 — 1
# of ply: col1-4,col2-6,col3-2,col4-10,col5-6,col6-2,col7-
5,col 8-10,col9-10

2 # of garment: size 1 - 0, size 2 — 4, size 3 - 6, size 4 - 6, size 5 — 2, size 6 — 1
#of ply:col1-4,col2-6,col3-2,col4-9,col5-7,col6-1,col7-5,
col8-10,col9-1

3 # of garment: size 1 - 0, size 2 - 0, size 3 -2, size 4 - 2, size 5 -4, size 6 - 1
# of ply: col1-3,col2-7,¢c0l3-0,col4-2,col5-2,col6-0,col7-2,
col8-8,col9-15

4 # of garment: size 1 - 0, size 2 - 0, size 3 -2, size 4 - 2, size 5 -4, size 6 - 1
# of ply: col1-3,col2-6,col3-0,col4-2,col5-3,col6-0,col7-2,
col8-8,col9-15

5 # of garment: size 1 - 0, size 2 — 1, size 3 -2, size 4 - 0, size 5 — 3, size 6 — 1
# of ply: col1-0,col2-0,col3-2,col4-0,col5-0,col6-0,col7-0,
col8-0,col9-0

6 # of garment: size 1 — 1, size 2 - 0, size 3 -4, size 4 - 2,size 5-0, size 6 -4
# of ply: col1-0,col2-2,col3-0,col4-0,col5-0,col6-0,col7-0,
col8-0,col9-0

7 # of garment: size 1 - 0, size 2 - 0, size 3 -3, size 4 - 4, size 5-5,size 6 -0
# of ply: col1-0,col2-0,col3-0,col4-11,col5-0,col6-0,col7
-5,col8-0,col9-6

8 # of garment: size 1 - 0, size 2 - 0, size 3-0, size 4 — 1, size 5 - 2, size 6 — 1
# of ply: col1-0,col2-0,col3-0,col4-0,col5-0,col6-0,col7-0,
col8-11,col9-0

9 # of garment: size 1 - 1, size 2 - 0, size 3 -0, size 4 - 0, size 5 -3, size 6 -0
# of ply: col1-0,col2-0,col3-0,col4-3,col5-0,col6-0,col7-0,
col8-0,col9-0

10 # of garment: size 1 — 1, size 2 — 3, size 3 -2, size 4 — 4, size 5-1,size 6 -0
# of ply: col1-0,col2-0,col3-0,col4-0,col5-0,col6-0,col7-3,
col8-0,col9-0

1 # of garment: size 1 - 0, size 2 - 0, size 3 -1, size 4 — 3, size 5-0,size 6 -5
# of ply: col1-0,col2-0,col3-0,col4-0,col5-0,col6-0,col7-0,
col8-0,col9-11

12 # of garment: size 1 - 0, size 2 - 0, size 3-0, size 4 — 2, size 5 -7, size 6 - 1
# of ply: col1-0,col2-0,col3-0,col4-0,col5-5,col6-0,col7-0,
col8-0,col9-0
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Table A1.2 COP with best fitness generated by proposed COP decision-making
model using (100+100) Adaptive ESs

Lay # Cutorder plan

1 # of garment: size 1 - 0, size 2 - 5, size 3-8, size 4 — 8, size 5 - 2, size 6 - 1
# of ply: col 1-6,col2-10,col3-2,col4-15,col 5-10,col 6-2,col 7
-10,col8-5,col9-0

2 # of garment: size 1 - 0, size 2 - 7, size 3 - 11, size 4 — 6, size 5 - 8, size 6 - 3
# of ply: col1-0,col2-0,col3-1,col4-0,col5-0,col6-0,col7-0,
col8-8,col9-12

3 # of garment: size 1 - 0, size 2 - 0, size 3 -5, size 4 — 6, size 5 - 14, size 6 - 4
#of ply:col1-2,col2-3,col3-0,col4-2,col5-2,col6-0,col7-1,
col8-3,col9-6

4 # of garment: size 1 - 0, size 2 - 0, size 3 -0, size 4 — 2, size 5 - 15, size 6 — 2
# of ply: col1-0,col2-0,col3-0,col4-0,col5-2,col6-0,col7-0,
col8-0,col9-0

5 # of garment: size 1 - 1, size 2 - 0, size 3 - 14, size 4 - 5, size 5 - 12, size 6 - 12
# of ply: col1-0,col2-1,col3-0,col4-0,col5-0,col6-0,col7-0,
col8-0,col9-0

6 # of garment: size 1 — 1, size 2 - 0, size 3 -1, size 4 - 5, size 5 - 10, size 6 - 0
# of ply: col1-0,col2-0,col3-0,col4-1,col5-0,col6-0,col7-3,
col8-0,col9-0

7 # of garment: size 1 - 0, size 2 - 0, size 3 - 2, size 4 - 11, size 5 - 2, size 6 — 1
# of ply: col1-0,col2-0,col3-0,col4-0,col5-0,col6-0,col7-0,
col8-5,col9-5

8 # of garment: size 1 - 0, size 2 - 0, size 3- 3, size4 - 4,size5-7,size 6 -0
# of ply: col1-0,col2-0,col3-0,col4-7,col5-0,col6-0,col7-0,
col8-0,col9-0

9 # of garment: size 1 - 0, size 2 - 0, size 3 -5, size 4 - 10, size 5- 0, size 6 -5
# of ply: col1-0,col2-0,col3-0,col4-0,col5-0,col6-0,col7-0,
col8-0,col9-8
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Table A1.3 COP with best fitness generated by proposed COP decision-making

model using (1000+1000) Adaptive ESs

Lay # Cutorder plan

1

# of garment: size 1 - 0, size 2 - 5, size 3 - 8, size 4 - 8, size 5 - 2,
size 6 -1

# of ply: col 1-6,col2-10,col3-2,col4-15,col5-10,col 6 -2,
col7-10,col8-5,col9-0

# of garment: size 1 - 0, size 2 - 7, size 3 - 11, size 4 — 6, size 5 — 8, size 6 — 3
# of ply:col1-0,col2-0,col3-1,col4-0,col5-0,col6-0,col7-0,
col8-8,col9-12

# of garment: size 1 - 0, size 2 - 0, size 3 -5, size 4 - 6, size 5 - 14,
size6-4

#of ply:col1-2,col2-3,col3-0,col4-2,col5-2,col6-0,col7-1,
col8-3,col9-6

# of garment: size 1 - 0, size 2 - 0, size 3 -0, size 4 - 2, size 5 - 15,
size 6 -2

#of ply:col1-0,col2-0,col3-0,col4-0,col5-2,col6-0,col7-0,
col8-0,col9-0

# of garment: size 1 - 1, size 2 - 0, size 3 - 7, size 4 - 3, size 5 - 6,
size 6 - 6

# of ply: col1-0,col2-2,col3-0,col4-0,col5-0,col6-0,col7-0,
col8-0,col9-0

# of garment: size 1 — 1, size 2 -0, size 3- 1, size 4 — 7, size 5 - 14,
size6-0

# of ply: col1-0,col2-0,col3-0,col4-1,col5-0,col6-0,col7-2,
col8-0,co0l9-0

# of garment: size 1 - 0, size 2 - 0, size 3 - 2, size 4 - 11, size 5 - 2,
size 6 — 1

#of ply:col1-0,col2-0,col3-0,col4-0,col5-0,col6-0,col7-0,
col8-5,col9-5

# of garment: size 1 - 0, size 2 - 0, size 3 -7, size 4 - 8, size 5 - 15,
size6-0

# of ply: col1-0,col2-0,col3-0,col4-3,col5-0,col6-0,col7-0,
col8-0,col9-0

# of garment: size 1 - 0, size 2 - 0, size 3 -7, size 4 - 13, size 5 -0,
size6-6

# of ply: col1-0,col2-0,col3-0,col4-0,col5-0,col6-0,col7-0,
col8-0,col9-6
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Abstract: Marker planning in apparel production is a kind of packing
problem in the research field of engineering. The irregular shapes of
pattern pieces of a garment make the marker planning problem more
complex. Few approaches have been developed to solve these problems,
although effectiveness of packing determines industrial resource
utilization. This study constructs a packing approach that integrates a grid
approximation-based representation, a learning vector quantization

neural network, a heuristic placement strategy and an integer
representation-based (u + A) — evolutionary strategy to obtain efficient
placement of irregular objects. Real data are used to demonstrate the
performance of the proposed methodology. The results are compared with
those obtained by a genetic algorithm-based packing approach and those
generated from industrial practice, demonstrating the effectiveness of the
proposed approach.

Key words: irregular object packing, evolutionary strategies, neural network.

6.1 Introduction

Packing problems are combinatorial optimization problems that concern the
allocation of multiple objects (patterns) in a large containment region without
overlap, and the objective of the allocation process is to maximize the occupied
space and minimize the ‘wasted’ space. In the literature, there are many approaches
to tackling different packing problems, such as those based on the concept of
‘no-fit polygons’ (NFP) (Bennell ef al., 2001, Gomes and Oliveira, 2002; Li and
Milenkovic, 1995; Oliveira et al., 2000; Stoyan ef al., 1996), methods of bottom-
left (BL) placement strategy (Dowsland and Dowsland, 1995; Oliveira et al.,
2000) and those based on linear programming compaction methods (Bennell and
Dowsland, 2001; Gomes and Oliveira, 2006; Li and Milenkovic, 1995; Stoyan
et al. 1996). In recent years, following the concept of phi-function proposed in
Stoyan and Gil, (1976), Stoyan ef al. constructed mathematical models of two- or
three-dimensional packing problems as problems of mathematical programming
to seek their local and global optimization solutions (Stoyan et al., 2002;
Scheithauer et al., 2005; Bennell et al., 2010; Stoyan and Chugay, 2009). It was
reported that the phi-function based techniques showed superior performance to

106
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NFP-based techniques. In a landmark paper, Burke et al. (2006) presented a new
bottom-left-fill heuristic algorithm, which integrated a geometrical definition, a
new technique of primitive overlap resolution, with hill climbing and tabu local
search methods, for the two-dimensional (2D) irregular stock-cutting problem.
Their experimental results on a wide range of benchmark problems showed that
the new bottom-left-fill heuristic algorithm outperformed the other techniques of
the previous studies.

It is well-known that packing problems are combinatorial optimization
problems with a very large search space. In order to search for their global optimal
solutions, mathematical programming techniques as a rule search for a huge
number of local extrema and it takes a lot of computational time. Various meta-
heuristic algorithms have been adopted as optimization tools to find good solutions
fast. However, this very often leads to sacrifice of high-performance results. These
meta-heuristic approaches include simulated annealing (Burke and Kendall, 1999;
Gomes and Oliveira, 1999; Gomes and Oliveira, 2006; Heckmann and Lengauer,
1995; Oliveira and Ferreira, 1993; Wu et al., 2003), tabu search (Bennell and
Dowsland, 1999; Bennell and Dowsland, 2001; Blazewicz et al., 1993), neural
networks (Au et al., 2006; Han and Na, 1996; Wong, 2003; Wong et al., 2006;
Wong et al., 2009; Yuen et al., 2009) and genetic algorithms (GA) (Babu and
Babu, 2001; Bounsaythip and Maouche, 1997; Bounsaythip et al., 1995; Fujita
et al., 1993; Guo et al., 2008, 2008a; Hifi and Hallah, 2003; Hopper, 2000; Ismail
and Hon, 1992; Jain and Gea, 1998; Jakobs, 1996; Song et al., 2006; Wong,
2003a; Wong et al., 2000; Yuen ef al., 2009a). Among these approaches, genetic
algorithms are the most popular technique to solve irregular object packing
problems (Hifi and Hallah, 2003).

Applications of genetic algorithms to irregular object packing problems based
on geometric representation have been extensively studied. For packing
approaches based on geometric representation, irregular objects are represented
by polygons that are composed of a list of vertices. For instance, Fujita et al.
(1993) developed an order-based genetic algorithm in combination with local
minimization to solve convex polygon packing problems. Jakobs (1996) also used
an order-based genetic algorithm to solve polygon packing problems. Bounsaythip
and Maouche (1997) provided a binary tree approach for packing problems in the
textile industry. When the above approaches were adopted, polygons were
circumscribed by their bounding rectangles. In the packing process, low-level
routines were adopted to find the smallest enclosing rectangle of the cluster using
a special encoding technique (Bounsaythip et al. 1995), which describes the
contour of a polygon relative to the enclosing rectangle by a set of integer values.
Hopper (2000) proposed a genetic algorithm in combination with a bottom-left
algorithm to solve both orthogonal and irregular nesting problems. Hifi and Hallah
(2003) developed an approach which consists of a constructive heuristic and a
hybrid genetic algorithm-based heuristic to two-dimensional layout problems for
cases of regular and irregular shapes.
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As reviewed in the previous paragraph, there are numerous approaches based
on computational geometric description giving good performance. Nevertheless,
it is hard to implement them due to their computational complexity for large and
complex data sets. In order to overcome the drawback, a digitized representation
approach called grid approximation (Ismail and Hon, 1992) was adopted and
objects were represented by two-dimensional matrices. There are two advantages
over the geometric representation: the first advantage is that there is no need to
introduce additional routines to identify enclosed areas in objects, and the second
one is that it is easier to detect overlap.

Although grid approximation has advantages, irregular object packing based on
grid approximation is a complex task. As a result, very few attempts to develop
efficient packing methods based on grid approximation for irregular objects have
been reported in the literature. In Ismail and Hon’s study (1992), rectilinear shapes
were digitized and represented as a two-dimensional grid array. A multi-parameter
binary string including relative positions of a shape was used to indicate shape
sequences. The traditional single-point crossover operator and the basic gene-
alter mutation operator (Goldberg, 1989) were adopted to generate new offspring.
However, applying such genetic operators to the data structure may cause
infeasible solutions (i.e. overlap). In view of the deficiencies of Ismail and Hon’s
method (1992), Jain and Gea (1998) designed a new concept of a 2D genetic
algorithm chromosome as a two-dimensional matrix to describe the complete
layout. Crossover and mutation operators were modified to suit this 2D genetic
algorithm chromosome, while a new genetic operator called compaction was
developed to increase the density of the layout. Nevertheless, this special encoding
approach results in a very long parent chromosome and leads to a very extensive
computation when it is applied to packing a large number of objects. Hence, it is
impractical to implement Jain and Gea’s algorithm (1998) for large-scale
problems.

Although evolutionary strategy, like GAs, is also a powerful evolutionary
algorithm that has been used successfully in solving various engineering problems
(Quagliarella et al., 1995) and usually shows faster convergence speed than
GAs do (Bick and Hoffmeister, 1991), it has not been investigated and used to
solve packing and nesting problems in the current literature. It is desirable to
investigate the performance of evolutionary strategy based on grid approximation
for irregular packing problems. In this study, a new hybrid approach was
developed which combines a (u + A) — evolutionary strategy, a learning vector
quantization neural network, a grid approximation representation and a heuristic
two-stage placement strategy, to increase the usability of the stock sheet. A (u +
A) — evolutionary strategy is used to determine the packing information (i.e. the
packing sequence of packing cells, objects’ orientation, and packing rules
selection), in which an integer representation is adopted to obtain higher
computational efficiency than the 2D genetic chromosome in Jain and Gea’s study
(1998). A learning vector quantization neural network was also developed by a
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set of examples inspired by experienced packing planners to diminish the size of
a search space by dividing the objects into three classes. A grid approximation
representation technique was also employed to represent any shaped objects,
including convex and concave. In contrast to the geometric algorithms reported in
previous research studies, grid approximation simplifies the calculation process,
and thus it is easier to judge whether objects overlap. A two-stage placement
strategy was proposed to ameliorate the shortcomings of packing approaches
based on enclosing rectangles.

The remainder of the chapter is organized as follows. A brief description of
irregular object packing problems is given and a new heuristic placement method
is presented in detail in Section 6.2. A (u + A) — evolutionary strategy is used to
determine the packing sequence of packing cells in Section 6.3. The effectiveness
of the proposed methodology is illustrated in Section 6.4. Conclusions are
summarized in Section 6.5.

6.2 Packing method for optimized marker packing

The problem addressed in this study is to pack a set of irregular objects {p,, p,,

..,p,} onto a stock sheet of infinite length C, and fixed width C,, without overlap.
Hence, a general methodology which integrates a grid approximation-based
heuristic placement approach, a learning vector quantization neural network, and
an (u + A) — evolutionary strategy is developed to obtain a packing pattern with
minimal length. In this case, the following assumptions are taken into consideration
to construct the methodology:

e The stock sheet is a rectangle with a fixed width and an infinite length.

e Each object has only two orientations, 0° and 180°, since this study focuses on
the marker planning process of the clothing industry. That is to say, the original
object and the object obtained by a 180° counterclockwise rotation are allowed
while an object is packed onto the stock sheet.

e The length and the width of each object are not larger than the size of the
stock sheet.

e Each object can be placed at any position on the stock sheet.

6.2.1 Object representation

In this study, the digitized representation technique, grid approximation, proposed
by Ismail and Hon (1992) was used to represent objects in any shapes, including
convex and concave. In contrast to geometric algorithms, the major advantage of
the grid approximation is that it is easier to detect overlap. By using this technique,
each object is divided into a finite number of equalized cells, and the size of a
selected cell is small enough to represent the objects. Pand P') denote the length
and the width of an enclosing rectangle corresponding to the object p.. R(? denotes
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the length of a cell, and R(;) denotes the height of a cell for the object p. (In
this chapter, R(;):lmm, and R(i) =1mm.) The object with a two-dimensional
matrix of size 49 A"is represented as follows:

(i) (i) (i)

a a cee a
1" 12 o)
L
a? g o g?
(i) 21 22 5 (1)
A" = M, [6.1]
a(l) a(') v g
A A2 .4'1;‘.41’ )

o pt _ (i)
where 4))) = and 4" = L.
R(f) R(I)

y X

For each entry, ¢ = 1 ifpixel (px, py) is occupied

R () otherwise

In addition, each object examined in this study had only two orientations: 0° and
180°. The matrix representation of the rotated object (180° counterclockwise
rotation) was obtained by simply modifying the matrix of the original object
shown in the above-mentioned equation. Then the matrix of the rotated object
becomes

(i) (i) (i)

a e a a
J‘I;I,A‘L’] AD2 A
i _ ; o )
A= a® o @ : [6.2]
2'1‘[}) 22 21
aD g g
LA 12 1
L

(1) (D)
Ay "% A4,

Similarly to the object representation, the stock sheet with an infinite length and a
fixed width was discretized into a finite number of equisized cells of size R * R .
Hence, the stock sheet with the length C, and the width C, were characterized by
amatrix U of size U,, x U, as follows:

[6.3]

C
where U, =— and U

’ L
y

_ CL
R

1 ifpixel (px, py) is occupied
Foreachentry,u = .

E () otherwise
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6.2.2 Heuristic placement approach

The architecture of the proposed heuristic placement approach is shown in
Fig. 6.1. First, the grid approximation is used to represent any shaped objects in

A digitized representation
technique

!

Objects in matrix
representations

l

Objects classification by
using a learning vector
quantization neural network

Objects in
BIG class

v

v

}

Objects in
OTHER class

A 4

Objects in
SMALL class

A 4

Packing rules selection
string defined by EA

Packing rules selection
string defined by EA

Objects orientation
string defined by EA

Packing rule

!

!

Packing rule

Object
orientation

A 4

Two-stage packing
strategy

Packing pattern

Packing
sequence

Packing sequence of
packing cells string
defined by EA

6.1 System architecture of packing materials.
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two-dimensional matrices. Second, a learning vector quantization neural network
is developed as a classification heuristic to divide the objects into three classes
according to their relative sizes: BIG, SMALL and OTHER. Third, an evolutionary
algorithm is used to determine the packing information (i.e. the packing sequence
of packing cells, objects’ orientation, and packing rules selection). Finally, a two-
stage placement strategy is proposed for the construction of a packing pattern
according to packing information, which is defined by the evolutionary strategy.
Objects in the BIG and OTHER classes are packed onto the stock sheet according
to the packing sequence of packing cells strings and packing rules selection strings
defined by the evolutionary strategy. That is to say, the objects in the packing cells
are placed by selecting rules from the 16 packing rules shown in Fig. 6.2, which

e S——— ==

(b) (c) (d)

— | ==

(9 (h)

e

(k) 0]

e

(n) (0) (P)

ufriging

6.2 Packing rules. (a) Object 1 top, object 2 bottom. (b) Object 2 top,
object 1 bottom. (c) Object 1 left, object 2 right. (d) Object 2 left,
object 1 right. (e) Object | top, counterclockwise rotate 180, object 2
bottom. (f) Object 2 top, counterclockwise rotate 180, object 1
bottom. (g) Object 1 left, object 2 right, counterclockwise rotate 180.
(h) Object 2 left, object 1 right, counterclockwise rotate 180. (i) Object
1 top, object 2 bottom, counterclockwise rotate 180. (j) Object 2

top, object 1 bottom, counterclockwise rotate 180. (k) Object 1

left, counterclockwise rotate 180, object 2 right. (I) Object 2

left, counterclockwise rotate 180, object 1 right. (m) Object 1 top,
counterclockwise rotate 180, object 1 bottom. (n) Object 2 top,
counterclockwise rotate 180, object 1 bottom, counterclockwise
rotate 180. (o) Object 1 left, counterclockwise rotate 180, object 2
right, counterclockwise rotate 180. (p) Object 2 left, counterclockwise
rotate 180, object 1 right, counterclockwise rotate 180.
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are acquired by pattern planning experts through in-depth interviews with
experienced pattern planners in the reference sites. Objects in the SMALL class
are packed onto the stock sheet according to the packing sequence of packing
cells strings and objects orientation strings defined by the evolutionary strategy. In
other words, the objects might be rotated (180° counterclockwise rotation).

Object classification

A learning vector quantization neural network (Kohonen, 1990) is developed as a
classification heuristic. The proposed network is trained by a set of examples
inspired by experienced packing planners to diminish the size of a search space
by dividing the objects into three classes according to their relative sizes:
BIG, SMALL and OTHER. Once the network has been trained, it has the ability
to classify various other kinds of objects that are similar to the training set,
which makes the network powerful. For instance, according to the packing
planners’ experience, if the size of an object in the BIG class is three times larger
than the size of an object in the SMALL class, and the length of an object in
the OTHER class is four times larger than the width of an object in the OTHER
class, BIG, OTHER and SMALL classes are classified. Without using a neural
network, the experienced parameters such as three times and four times should
be input into the system manually according to the packing planners’ experience.
That is to say, before using a neural network, the classification is based on
the analysis of a great number of objects in practice. After the network has
been trained by a large number of examples, instead of using packing
planners’ experience, the objects can be automatically classified by their relative
sizes.

The BIG class is a class of bigger objects, while the SMALL class is a class of
smaller objects (i.e. the size of an object in the BIG class is a multiplication of the
size of an object in the SMALL class). On the other hand, the OTHER class is a
class of objects that are very long but narrow or vice versa. Objects in the BIG
class and the OTHER class are paired up to form packing cells. That is to say, each
packing cell contains two objects that have the same or similar size. At the same
time, each object in the SMALL class generates a single packing cell. The object
packing sequence has thus been changed into the packing cells packing sequence,
which decreases the size of the search space. For instance, it is assumed that the
number of packed objects is 64 and the size of the search space is 64. However,
after the procedure of object classification, if the number of objects in the BIG,
SMALL and OTHER classes is 20, 8 and 36 respectively, then the size of the
search space is reduced to 36. The key steps of the learning vector quantization
neural network approach are presented below:

e Step 0: Initialize reference vectors, weight vectors, and learning rate a(0).
e Step 1: While the stopping condition is false, perform steps 2—6.
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e Step 2: For each training input vector (i.e. the area of each piece and the
narrow factor of each piece), perform steps 3—4.

e Step 3: Find J so that the Euclidean distance between the input vector and the
weight vector for the jth output unit is a minimum.

e Step 4: Update the weight vector w, as follows:

it T=C,, thenw, (new) =w, (old) + a(X — w, (0ld));
if T# C,, thenw, (new) =w, (old) — a(X — w (old));

where X denotes the training vector, 7" denotes the correct class for the training
vector, and C, denotes the class represented by the jth output unit.

e Step 5: Reduce learning rate .

e Step 6: Test the stopping condition, which may specify a fixed number of
iterations or the learning rate reaching a sufficiently small value.

Two-stage placement strategy

A two-stage placement strategy is proposed as an alternative to construct a
packing pattern according to the packing information (i.e. the packing sequence
of packing cells, objects orientation, and packing rules selection), which is defined
by the evolutionary strategy. In this case, the enclosing rectangles of the packing
cells are first examined, and then the packing cells are compacted directly. In
particular, instead of implementing the compaction routine in a single step after
all the enclosing rectangles of the packing cells are allocated, the compaction
routine is done when each enclosing rectangle is placed. The advantage of this
compaction routine is the ability to obtain a tight packing pattern, providing more
space for the coming packing cells. It is obvious that the two-stage placement
strategy improves the packing pattern quality without compromising the
computational effort. The key steps of the two-stage placement strategy are
presented as follows:

* Step 1: Place the coming packing cell C,, at the uppermost and infinite
right corner of the stock sheet. Due to the approximation of the packing cell

by its enclosing rectangle at the first stage, the matrix of the stock sheet

becomes
00 - A 0 0. A"
uG+n=uG+| 20T Y0 ? [6.4]
00-- 0 oo, uB 0 ... 0 -

L1

. . ()
with submatrices 4 7' =(a
px,py A(‘/+1' A(’j+|'
v XA

(i) i
where @' =1and up"”’ = )
px.py px.py P, py
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Step 2: Shift the packing cell C, . leftward and downward until it meets other
packing cells and cannot be moved again. In view of the property of matrices,
it is convenient to shift the packing cell by counting the empty cells in the
matrix. Then the matrix of the stock sheet becomes

vien=| 0 6.5
(J+D £ 0 0 [6.5]
UB" 0 .- 0
UyxU,

Step 3: Represent the packing cell C, i1 At the second stage by using its
enclosing rectangle without approx1mat1ng it, and then the matrix of the stock
sheet is

0 0.0
uGsn=| o0 6.6
(+D Ul 0 - 0 [6.6]
uB"” 0 -0

UyxU;

. . (i) i,
with submatrices U4 " =|ua’"
pxpy | ) G

(i)
where ua "'’ =

PX, py - px,py’
Step 4: Compact the packing cells by removing the vacant cells between

these two matrices of packing cells, and then the matrix of the stock sheet
becomes

0O 0--0
uG+n=| , 6.7
GD=| 0 oo [6.7]
UB"*" 0 - 0
UpxUy
with submatrices, UB' = (ub(i“')y) for each entry, ub =y
PP e o0 X, py px,py

Furthermore, UB;;-’*‘) and UBS-’*‘) satisfy the following conditions:

UB" <UB) +UA;™
UB," = max{UB(') UA™ ‘)}
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

6.3 (a—-d)Procedures of two-stage placement strategy: the object at
the top right in Step 1 represents the coming packing cell CU+1.

An example of how the objects are placed according to the two-stage placement
strategy is shown in Fig. 6.3.

6.3 Evolutionary strategy (ES) for optimizing
marker planning

In this study, the (u + A) — evolutionary strategy (ES) was adopted. In contrast to
the elitist strategy of genetic algorithms, with the aid of the (u + A) — ES, parents
survive until they are superseded by better offspring (Béck et al., 1997). The
following notation is used to facilitate the presentation:

u = the population size of parents

A = the population size of offspring

s, = k th individual in the individual space

f(s,) = the fitness value of individual s, (k=0,1,2,.. .,u+A—1)
t = generation index (1= 0,1,2,. . .)

It is assumed that the current generation is ¢ and the current population is
represented by X(#), which is a population of u individuals, and the general outline
of the (u + A) — ES is illustrated in the block diagram in Fig. 6.4.
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6.4 Block diagram of the (u+ A) — ES.
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Step 1: Set t = 0 and generate an initial population of u individuals randomly.
Step 2: Generate a mating pool by pre-selection (see the selection operation
section for details).
Select individuals from the population according to a specified selection
operation. The selected individuals are then placed into a mating pool.
Step 3: Perform recombination and mutation.
Pair up the individuals in the mating pool and generate A(> ) new-born
offspring individuals using the operators of recombination and mutation. In
this study, each chromosome consists of three portions. For the first portion
of the chromosome, discrete recombination operators, repeated exchange
mutation operators, and evolutionary inversion mutation operators are
employed. For the second portion of the chromosome, traditional gene-
alter mutation operators and traditional discrete recombination operators
are developed. For the third portion of the chromosome, exchange mutation
operators and traditional discrete recombination operators are developed.
Step 4: Create a new population for the next generation by post-selection (see
the selection operation section for details).
Select u best individuals from the combined population of parents (u
individuals) and offspring (A individuals). All the selected u individuals are
then collected to form a new population known as X(z+1), which replaces
X(#) and serves as the population of individuals for the next generation z+ 1.
Step 5: Check the pre-specified stopping condition.
In this case, the pre-specified stopping condition is satisfied when the
pre-defined maximum number of generations is reached or no further
increase in the fitness function values of the individuals is obtained. If it
is satisfied, terminate the search process, and return to the best solution
as the final solution. Otherwise, increase ¢ by 1 and go to step 2.

6.3.1 Structure of the individuals

Although there are many different representations to implement evolutionary
algorithms, the most natural representation for the object packing problem is
integer representation. In this study, each chromosome, as shown in Fig. 6.5,
consists of three portions. A set of bits in the first portion of the string is a set of
integer numbers to indicate the packing sequence of packing cells, which are
shown as Q= (i ,i,,. . .,i ), i: index of the packing cell C. The order of a gene in an
individual is the order to examine the packing cell that is identified by the gene. A
set of bits in the second portion of the string is a set of 0—1 binary decision
variables to represent the object orientation (i.e. 0° or 180°) for each object in the
SMALL class, and a set of bits in the third portion of the string is a set of integer
numbers containing information to select packing rules for the BIG and OTHER
classes. Since factors such as object orientation and packing rules selection in the
second and third portions of the string complicate the packing problem, this new
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Object orientation string for Packing rules selection string

G (PN EGEED SiliE SMALL class (single piece cell) for BIG class and OTHER class

6.5 Chromosome structure.

chromosome structure could prevent potential or even detrimental squashing of
the solution space. The length of the new chromosome is 3N, where N is the
number of cells to be packed.

6.3.2 Selection operation

In this study, two selection schemes, pre-selection and post-selection, are
implemented. The pre-selection scheme is stochastic, while the post-selection
scheme is deterministic. For the pre-selection operation shown in Fig. 6.4, one of
the best-known selection schemes, called the ‘biased roulette wheel scheme’
(Goldberg, 1989), was used. The probability of selecting an individual s, from the
current population X(t) is given by the following equation:

f(s,)
Pow=c — [6.8]

S 7Gs)

In any generation, the individuals are selected by their respective selection
probabilities governed by the above-mentioned equation. If the individual s,
represents a candidate solution, then the fitness function is f{s,) = 1/C,. Therefore, the
candidate solutions with lower objective function values have higher selection
probabilities. Through this connection, the optimal objective function value can be
obtained by maximizing the fitness function values of the individuals. When the pre-
selection process is completed, the individuals in the mating pool will then be paired
up to generate A new offspring by recombination and mutation operations.

In the case of the post-selection operation in Fig. 6.4, the combined population
of parents (u individuals) and offspring (A individuals) are sorted by the fitness
function values. The u best individuals with higher fitness function values will
survive while the A remainder individuals with lower fitness function values will
be discarded.

6.3.3 Recombination operation

The discrete recombination operator was used in this study. The procedure of
the discrete recombination operator for the first portion of the chromosome is
presented on the next page:
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1. Select two parents randomly from the mating pool.

2. Randomly generate a decision string with the same length as the parent
chromosomes. Each bit in the decision string can take a value of ‘1’ or ‘2°. A
value of ‘1’ indicates that the corresponding components of the offspring
chromosome are copied from the first parent chromosome; otherwise, ‘2’
represents that the positions in the offspring chromosome are filled with the
elements of the second parent chromosome.

3. Fill some positions with the offspring chromosome by copying corresponding
elements of the first parent chromosome associated with a ‘1 in the decision
string. That is to say, the same components appear in the same positions in the
offspring chromosome as they do in the first parent chromosome.

4. With reference to the second parent chromosome, the components present in the
offspring chromosome are omitted; otherwise, the remaining part is reserved.

5. The remaining positions in the offspring chromosome are filled with the
reserved elements of the second parent chromosome in the same order
whenever the decision string contains a ‘2’.

Consequently, each offspring chromosome consists of two portions: a set of bits
in the first portion of the string preserves information from the first parent
chromosome, and a set of bits in the second portion of the string incorporates
information from the second parent chromosome. Figure 6.6 illustrates the

Parent 1 C,|C3|Cy |G| Co| Cy|CslCs

Parent 2 Ci|Cs|C| G| Cs| Cr|Cy|GCs

Decision string | 2 1 1 2 11 2|2 1

Offspring Ci|C3|Cy|Cg | G| Cs| G| Cs

6.6 Discrete recombination operator.
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mechanism of the recombination process graphically. For the second and third
portions of the chromosome, the traditional discrete recombination operator is
employed, in which each bit is randomly copied from either the first or the second
parent chromosome.

6.3.4 Mutation operation

After the recombination process is completed, instead of using the traditional gene-
alter mutation operation (Goldberg, 1989), for the first portion of the chromosome
the repeated exchange mutation operation and the evolutionary inversion mutation
operation are employed to prevent infeasible solutions in this study. In contrast to the
recombination operator, the mutation operator is always regarded as a background
operator. However, Bick ef al. (1997) suggested that the mutation operator becomes
more productive as the ES converges. The repeated exchange mutation operator is
used to introduce new schemata into the population in order to prevent premature
convergence of the population, while the evolutionary inversion mutation operator is
adopted to manipulate the local search process over the solution space like an uphill-
climbing technique to improve the capability of the local search process. The
algorithm regulates a balance between the exploration and exploitation of the solution
space. The repeated exchange mutation operator has the following procedures:

e Step 1: Generate a random integer @ within a range of [1, /] (where / is the
length of the chromosome) to determine the number of exchanges.

e Step 2: Randomly choose two bits along the string and the two selected bits
are exchanged.

e Step 3: Iteratively implement step 2 w times.

Figure 6.7(a) shows an illustration of step 1 of the above-mentioned procedure.
The procedure of the evolutionary inversion mutation operation is outlined below:

e Step 1: Set Loop_num = (. Generate a random integer: 6 within a range of [1,
[] (where [ is the length of the chromosome) to determine the number of loops.

e Step 2: Two cutting points are selected randomly along the length of the
chromosome. The substring between these two cutting points is reversed and
the remaining part of the chromosome is preserved.

e Step 3: If the fitness function value of the newly generated individual is higher
than the original one, then the inversion operation in the above-mentioned
step is implemented; otherwise, go back to the first step.

e Step 4:1f Loop num > O1is satisfied, terminate the process; otherwise, increase
Loop num by 1, then go to step 2.

Figure 6.7(b) illustrates an example of a simple inversion mutation process
presented in step 2.

For the second portion of the chromosome, the traditional gene-alter mutation
operator (Burke and Kendall, 1999) was adopted. For instance, if an offspring
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The first The second
random point random point

L

Parent o Cs C, Cs G, C, Ce C.

Offspring 7 3 1

(@)

The first The second
cutting point cutting point

Parent C,|C|C |G |C|C|C|C

Offspring ClGIG |G |G |G |G |G

(b)

6.7 Mutation operators. (a) Exchange mutation operator.
(b) Inversion mutation operator.

individual is encoded by the binary representation (0 1 1 0 0 1), then six random
numbers ranging from 0.00 to 1.00 are drawn: (0.653, 0.231, 0.007, 0.014, 0.003,
0.024). If the mutation rate is 0.01, two random numbers in the above-mentioned
array have their values smaller than the mutation rate. These two numbers will
trigger the mutation operation to take place in the third and fifth bits of the string.
The mutation operator causes the bits to change from 1 to 0 or 0 to 1 whenever the
mutation operations are triggered. The resulting individual becomes (01001 1).
For the third portion of the chromosome, exchange mutation operator (Biack and
Hoffmeister, 1991) is employed. The procedure of the exchange mutation operator
is to randomly choose two bits along the string, and then the two selected bits are
exchanged.
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6.4 Experiments to evaluate performance

In this section, eight real examples are used to evaluate the performance of the
proposed methodology.' First of all, the results of the proposed methodology are
compared with those obtained by the genetic algorithm (GA) with the elitist
strategy and the heuristic placement (HP) approach (GA+HP approach). The
GA+HP approach is the same as the proposed approach except that a GA with
elitist strategy is used to replace the ES so that the performance of GA and ES can
be compared in the problem investigated. Then the results are also compared with
those derived by industrial practice (IP) in order to demonstrate the effectiveness
of the proposed methodology.

Table 6.1 lists six real examples taken from a marker planning process of the
clothing industry. In all experiments, the parameters adopted for the evolutionary
strategy after testing were u =50, A = 100, recombination rate = 0.7, mutation rate
= 0.03, and maximum number of generations = 500. In addition, the GA with the
elitist strategy was also used to solve the examples for comparison purposes, and
the genetic parameters adopted for the GA after testing were population size = 100,
crossover rate = 0.7, mutation rate = 0.003, and maximum number of generations
= 500. Due to space limitations, only example SWIM3 was used to evaluate the
performance of the evolutionary strategy by the off-line performance measure:

T

Off-line performance measure= 1 2 z

t=1

*

s [6.9]
where z, is the best objective function value among the candidate solutions in
generation ¢, z*is defined by the equation

Z*=min{z, z,,. . ., 2,}. [6.10]

Table 6.2 shows that the average objective function value of the final solutions
among the five runs for example SWIM4 is 138.85, which is less than the best
solutions obtained by the GA. Table 6.2 also shows that the proposed algorithm
has better off-line performance than those of the GA and also outperforms the GA
in terms of quality of the final solution. The proposed algorithm is superior to the
GA as a function optimizer.

Table 6.1 Data sets used in the illustrative examples

Problem name Number of objects Sheet width (inches)
SHIRT1 48 48
SHIRT2 64 48
SHIRT3 80 48
SWIMA1 60 60
SWIM2 78 60
SWIM3 108 60

" The detailed given data of the eight experiments are available upon request.
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Table 6.2 Comparison of the off-line performance by the proposed approach and
the genetic algorithm

GA ES
Overall best solution among 5 runs 141.74 138.64
Average of the best solution among 5 runs 142.17 138.85
Best off-line performance among 5 runs 143.45 138.98
Average off-line performance among 5 runs 144.05 139.57

Notes: ES, evolutionary strategy; GA, genetic algorithm.

Each example listed in Table 6.1 was run five times by the ES and the GA while
five trials were conducted by five marker planners. Table 6.3 summarizes the best
results of the six packed stock sheets, and the results obtained by the proposed
approach are marked in bold. The efficiencies of the packing pattern for the
proposed approach, the GA+HP approach, and the IP are shown in the third,
fourth and fifth columns of Table 6.3. The efficiency was measured as a quotient
between the area of packed objects and the used rectangle area of the stock
sheet (Gomes and Oliveira, 2006). The results indicate that the proposed
methodology improves the efficiency of the packing pattern and shortens its
length. Table 6.4 shows the details of the improvement percentage of each
example. It reveals that the average improvement of the examples is 1.92% for the
first comparison in column 2, and 9.99% for the second comparison in column 3.
Finally, the packing patterns for each example generated by the proposed
methodology, the GA+HP approach and the IP approach are presented in Fig. 6.8,
6.9 and 6.10 respectively.

Table 6.3 A summary of the results for the eight illustrative examples

Problem Number ES+HP Efficiency Proposed Efficiency I[P Sheet Efficiency
name of sheet (%) methodology (%) length (%)
objects length GA+HP Sheet (inches)
(inches) length
(inches)

SHIRT1 48 146.60 75.91 146.94 75.74 151.78 73.21
SHIRT2 64 193.72  76.61 201.32 73.71 203.21  73.03
SHIRT3 80 243.44 76.20 248.71 74.58 260.69 71.16
SWIM1 60 92.60 58.62 94.94 57.18 100.30 54.13
SWIM2 78 122.49 58.65 126.64 56.73 133.06 53.99
SWIM3 108 138.64 57.84 141.74 56.54 147.85 54.20

Notes: GA, genetic algorithm; HP, heuristic placement; IP, industrial practice.
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(®
6.8 The best packing pattern generated by the proposed approach

for the illustrative examples: (a) SHIRT1, (b) SHIRT2, (c) SHIRT3,
(d) SWIM1, (e) SWIM2 and (f) SWIM3.
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6.9 The packing pattern generated by the GA+HP approach for the
illustrative examples: (a) SHIRT1, (b) SHIRT2, (c) SHIRTS3, (d) SWIM1,

(e) SWIM2 and (f) SWIM3.
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clothing industry for the illustrative examples: (a) SHIRT1, (b) SHIRT2,

6.10 The packing pattern derived from the marker planner in the
(c) SHIRTS3, (d) SWIM1, (e) SWIM2 and (f) SWIM3.
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Table 6.4 Method comparisons

Problem name Improvement (proposed Improvement (proposed
methodology vs. GA+HP) (%) methodology vs. IP) (%)

SHIRT1 0.23 3.4

SHIRT2 3.78 4.67
SHIRT3 2.12 6.62
SWIM1 2.46 7.67
SWIM2 3.28 7.94
SWIM3 2.18 6.23

Notes: GA, genetic algorithm; HP, heuristic placement; IP, industrial practice.

6.5 Conclusion

In this study, a heuristic placement approach based on grid approximation, a
learning vector quantization neural network, and an integer representation-based
evolutionary strategy are proposed to establish an effective methodology for
solving irregular object packing problems. This approach has many advantages.
First, with the placement approach based on grid approximation, it provides the
system designers with an easier way to detect whether overlap occurs. Second, the
two-stage placement strategy improves the packing pattern quality without
compromising the computational effort. Third, the formulation of optimal packing
information can be accomplished easily by manipulating the composition of the
integer string format. Fourth, a learning vector quantization neural network is
developed as a classification heuristic to reduce the size of the search space. Fifth,
adding factors such as object orientation and packing rules selection in the second
and third portions of the string could prevent potential or even detrimental
squashing of the solution space. Finally, the proposed evolutionary strategy can
maintain a better balance between exploitation and exploration of the solution
space by generating the evolution of the populations. The effectiveness of the
proposed methodology is demonstrated through various experiments, and the
results of this methodology are compared with those of the genetic algorithm
using the heuristic placement approach and the results derived from marker
planners in the industry. The results show that the proposed methodology provides
an effective means to increase the usability of the stock sheet.

The proposed methodology can handle convex and concave shapes well and
obtain the global optimization solutions. However, this study has not compared
the performance of the proposed approach with the existing approaches in the
literature. Based on various benchmark problems in open literature, future work
will aim at the performance comparison of the proposed approach with various
existing approaches, such as NFP techniques, phi-function techniques and the
new bottom-left-fill heuristic algorithm of Burke et al., (2006) Moreover, the
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proposed approach will also be fine-tuned, particularly in the parameter setting,
which influences the optimization performance.
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Abstract: Today’s apparel industry must respond to an ever-changing fashion
market. Just-in-time production is a must-go direction. The apparel industry
generates more production orders, which are split into smaller jobs to provide
customers with timely and customized fashion products. Production planning is
even more challenging if the due times of production orders are fuzzy and
resource competing. In this chapter, genetic algorithms and fuzzy set theory
generate just-in-time fabric-cutting schedules in a dynamic and fuzzy
environment. Real production data were collected to validate the proposed
genetic optimization method. Results demonstrate that genetically optimized
schedules improve the satisfaction of production departments and reduce costs.

Key words: genetic algorithms, fuzzy set theory, parallel machine scheduling,
fabric cutting, apparel.

71 Introduction

Apparel production is a type of assembly manufacture that involves a number of
processes. Fabric-cutting operation is done in a fabric-cutting department, which
usually serves several downstream sewing assembly lines. Effective upstream
fabric-cutting operation ensures the smoothness of downstream operations, and
thus is vitally important to the overall system efficiency. Production scheduling of
apparel production is a challenging task due to a number of factors. First of all,
fashion trends are always unpredictable; thus just-in-time (JIT) production is
employed to ensure a short production time-to-market. Moreover, in order to cope
with the increasing demand for product customization, the quantity of garments
per production order tends to be smaller, and thus the number of production orders
processed by the manufacturer has become larger. In this chapter, JIT production
scheduling of manual cutting department operation is investigated.

711 Just-in-time (JIT) scheduling

Production scheduling has been extensively studied, and previous literature has
focused more on single regular measures, such as mean flow-time and mean
lateness. Since the 1980s, the concept of penalizing both earliness and tardiness
has spawned a new and rapidly developing line of research in the scheduling field

132
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(Baker and Scudder, 1990). In a JIT environment, both earliness and tardiness
must be discouraged, since jobs finished early increase inventory cost while late
jobs lead to customers’ dissatisfaction and loss of business goodwill. Thus an
ideal schedule is one in which all jobs finish within the assigned due dates. The
objectives of early/tardy (E/T) scheduling could be interpreted in different ways,
for example minimizing total absolute deviation from due dates, job-dependent
earliness and tardiness penalties, non-linear penalties, and so forth (see Baker and
Scudder, 1990 for a comprehensive survey).

A main stream of E/T scheduling research is regarding the scheduling of a group
of independent jobs with a common due date (De et al., 1991, 1993, Hall and Posner,
1991; Hall et al., 1991; Hoogeveen and van de Velde, 1991). The common due date
is either a known property of the problem or a decision variable to be optimized
along with the job sequence. The latter is equivalent to the former for the single-
machine case when the common due date is large (long) enough (Hoogeveen and
van de Velde, 1991; De et al., 1991, 1993). Therefore, the former case of scheduling
problem with a known due date can be divided into two classes: large due date
(unrestrictive case) and small due date (restrictive case). Large due date problems
are analytically solvable (Kanet, 1981; De et al., 1993), while small due date cases
are proven NP-hard even with linear E/T penalties (Hoogeveen and van de Velde,
1991; Hall et al., 1991; De et al., 1991). In the more complex case of small due date,
researchers have so far obtained limited results for some special cases using various
techniques such as explicit enumeration algorithms (Bagchi, et al., 1986), branch
and bound algorithms (Bagchi ef al., 1987; Szwarc, 1989) and pseudo-polynomial
dynamic programming algorithms (Hall ez al., 1991, Hoogeveen and van de Velde,
1991). In the apparel industry, a single cutting department works on different
production orders simultaneously in order to suit the needs of downstream sewing
lines. In contrast to the above common due date cases, each production order, which
is composed of a group of smaller jobs, has a distinct due time.

7.1.2 Parallel machine scheduling

The above-mentioned studies are mainly for single machine production
scheduling. The scheduling of cutting department operation is similar to a
traditional parallel machine scheduling (Mok et al., 2007). Figure 7.1 shows an
example of the configuration of the cutting department.

In parallel machine scheduling, a batch of jobs is scheduled to be processed by
any one of a number of available machines so that the best overall system
performance is achieved (Cheng and Sin, 1990). In cutting departments, fabric-
cutting jobs that belong to different production orders are to be processed on one
of the parallel spreading tables so that the demand from downstream sewing lines
can be fulfilled in a timely manner. Research on parallel machine scheduling in the
JIT context has received much attention in relatively recent years. Cheng and Chen
(1994) showed that parallel machine scheduling problem is NP-hard when due
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Length of spreading tables 600 feet

| | | | | | Spreading table 1

| | | | Spreading table 2

| | Spreading table 3

A | _r Spreading table 4

Fabric lays/jobs*

* Fabric cutting jobs belong to different production order.

7.1 Layout of a fabric-cutting department consisting of four cutting
tables with examples of fabric lays being spread.

date is a decision variable. Cheng et al. (1995) minimized the maximum weighted
absolute lateness on parallel machine using genetic algorithms. Cheng et al. (1996)
discussed the scheduling of multiple simultaneously available jobs on parallel
machines with controllable processing times. Chen and Lee (2002) studied the
parallel machine scheduling with a common due window using branch and bound
algorithms. However, the above results assume all jobs with a common due date.

Moreover, fabric-cutting scheduling has the distinctive feature that two
interdependent processes (spreading and cutting) must be scheduled
simultaneously. The spreading operation must be completed before the cutting
operation can start. The spreading operation can accordingly be viewed as a setup
operation for the processes of cutting. In addition, fabric-cutting scheduling is a
resource-constrained scheduling problem (see Section 7.2.3). Ventura and Kim
(2003) investigated parallel machine scheduling with non-common due dates and
additional resource constraints; however, all job processing times are assumed
constant in their investigation. In a fabric-cutting scheduling problem, each job
has its individual spreading and cutting processing times.

7.1.3 Fuzzy scheduling

The traditional production scheduling studies assumed that the due times are crisp
values. In practice, it is sometimes allowable to complete jobs beyond certain due
times in the apparel industry. This is because apparel manufacturers determine
internally the due time windows of various production orders for different
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production departments, including cutting, sewing, pressing and packaging
departments, based on the final delivery due dates and production capacity. Such
internal due time windows are determined to ensure on-time delivery of final
products and reduce work-in-progress. Fuzzy set theory has been applied to
handle the scheduling problem in a fuzzy environment.

Fuzzy set theory (Zadeh, 1965) is an attractive framework for dealing with
‘fuzzy’ (uncertain) information, and there is indeed an increasing interest in
fuzzy scheduling in academia and industry (Stowinski and Hapke, 2000). In fuzzy
scheduling research, fuzzy numbers, an extension of the concept of confidence
intervals, are used to model the imprecise time parameters. In this chapter, the
production-order due-time windows are presented in the form of fuzzy numbers.
Genetic algorithms are then used to optimize the cutting department production
schedules such that the requirement by the downstream sewing lines for fabric
cut-pieces for assembly can be maximally satisfied.

The outline of this chapter is as follows. Section 7.2 provides a general
description of the fabric-cutting system, including model formulation, fuzzy due
time definition, and job placement mechanism. The general methodology of
genetic optimization of fabric-cutting scheduling with fuzzy due times is described
in Section 7.3. The proposed method is demonstrated by two real production cases
in Section 7.4, in which the genetically optimized results are compared with those
implemented by industrial practice. Finally, conclusions and recommendations
for future work are outlined.

7.2 Problem formulation in fabric-cutting operations

In a traditional fabric-cutting department, there are several key operations
involved, which are shown in Fig. 7.2. The fabric-cutting operation studied in this
chapter satisfies the following assumptions:

e The manual spreading carts for spreading and manual straight-knife cutters
for cutting are always available throughout the scheduling period.

e Jobs (fabric lays) are always available to be loaded into the system and to be
processed by any of the spreading carts and cutters on any of the parallel
spreading tables.

e No job can be processed on more than one spreading table simultaneously.

e There is no precedence constraint on the jobs.

Fabric-lay Marker

. >, ) —» Spreading —»{ Cutting » Takeoff [ Bundling
planning planning

7.2 Workflow of a fabric-cutting department.
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7.2.1 Efficient manual cutting systems

The system investigated in this chapter assumes an efficient manual cutting model
configuration. In an efficient system, after spreading and cutting operations, fabric
pieces are taken away from the spreading tables for bundling operations, which
helps to make space for spreading new jobs. In an efficient fabric-cutting
department, a group consisting of four operators is normally assigned to each
spreading table. The group is divided into two sub-groups in which two operators
are responsible for fabric spreading and the remaining two operators are
responsible for cutting the fabric lay that has been spread. The division of labor
allows operators to focus on their competent operations, thus improving the
overall efficiency. Spreading operators continue to spread new fabric lays (jobs)
once they have finished the present jobs. The purpose is to reduce delay due to the
switching between spreading and cutting. Because of the limited length of
spreading tables, idle time could occur if there were insufficient free area on
the spreading table available for the new fabric lay. Cutting operators then cut
the fabric lays according to the spreading schedule, that is, 0=0, on each
spreading table. Obviously, cutting idle time occurs when the cutting operators
have finished the current job while the new job is still being spread and is not yet
ready to be cut.

7.2.2 Fuzzy due times representation

As discussed in Section 7.1.1, both tardiness and earliness are discouraged in a
JIT environment. A generic E/T model is represented as

[($)= (x4, E +BT), [7.1]

where £, =max(0, d,—C,) is the earliness of job k with completion time C, and due
time d,, and T,=max(0, C,—d)) is the corresponding tardiness. In Eq. 7.1, a, and
P, are penalty weights for earliness and tardiness, respectively. JIT scheduling
focuses on the best schedule to minimize the objective function f(S).

In this chapter, the due times of different production orders are represented as
trapezoidal fuzzy numbers (TrFN) with the following definition:

' 0, t=d’
dtB__d;A ,d'<t<d®
uy (1) = 1 d? <t=d" [7.2]
diD__;c ,dS <t<d”
0 d’ <t
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In the apparel industry, the factory manager determines departmental due time
windows, rather than precise due time, of different production orders so as to
ensure smoothness of downstream operations and on-time delivery of final
products. Such due time windows represent the managerial preference regarding
different values of production order completion time.

As shown in Fig. 7.3, d*, d”, d“ and d” are crisp real numbers such that 0< 4"
< d? <d° < d”. The membership value of these fuzzy numbers expresses the
degree of satisfaction associated with corresponding job completion time:
complete satisfaction if the job is completed during the time interval of d” to d;
the degree of satisfaction increases linearly from time d* to d” and decreases
linearly from time d“ to d”; and complete dissatisfaction if the job is completed
before t=d” or beyond t=d".

When the due dates are crisp, the weights ccand fin Eq. 7.1 denote the decision-
maker’s view on how significantly each job’s lateness or earliness affects the
overall system. In the case of fuzzy due date, the steepness of change between
complete satisfaction and complete dissatisfaction (i.e. the side slope) represents
the same decision-maker’s view.

I N
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0

=

(2]

5

(0]
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[a) 0 >
at d? d© aP t

7.3 Trapezoidal fuzzy due date (d*, d, d¢, d°).

7.2.3 Job placement mechanism

The main objective of fabric-cutting scheduling in a JIT environment is to
maximize the satisfaction of downstream production units. Minimizing production
makespan (in other words, minimizing operator idle time) is another key issue.
Since each fabric-cutting job involves both spreading and cutting operations, the
job placement algorithm of manual cutting systems is described here to explain
the way jobs are allocated to different spreading tables, and thus to calculate the
makespan.

In a cutting department with multiple spreading tables, m, a first-come-
first-serve rule is always applied when assigning a sequence of jobs to be
processed by different spreading tables. For a given job sequence, o, jobs are
allocated to different spreading tables in accordance with the following placement
algorithm:

© Woodhead Publishing Limited, 2013



138 Optimizing decision making

1. Allocate the first m jobs, J (i =1, . ., m), to the m spreading tables, set i = m.

2. If any spreading table has enough space for the job J, I (free area > fabric
length ¢(J.. ), allocate J,_ | to the first available spreading table and set i = i+1.

3. If there is no spreading table available (free areas of all m tables < fabric
length ¢(J., ), wait until enough spreading area is obtained by clearing up the
cutting job J, queues.

4. Repeat procedures 2 and 3 until all the jobs in the sequence are allocated.

According to the described job placement algorithm, individual schedules at
different spreading tables are defined for a given job sequence. Thus, the system
makespan time, that is, the maximal operation duration of the m spreading tables,
can be calculated accordingly. Thus, using this placement algorithm, the parallel-
machine (spreading table) scheduling problem becomes a single sequencing
optimization problem with multiple objectives to maximize the degree of
satisfaction of downstream sewing lines and reduce overall production makespan
in the JIT context.

7.3 Genetic optimization of fabric scheduling

In apparel manufacturing, production planners assign a sequence of jobs (fabric
lays) to different spreading tables for spreading, cutting and bundling. According
to the job placement algorithm described in Section 7.2.4, the parallel machine
scheduling optimization problem in the fabric-cutting department is reduced to a
single sequencing optimization problem. The job sequencing problem is a
permutation problem with 7 jobs, and the total number of possible solution is 7!
(e.g. n'=1.24x10%" for n=48). The search space significantly expands as the
number of jobs, n, increases, which makes it attractive to use genetic algorithms
(GAs), a metaheuristic technique, to search for the best job processing sequence
in a manual fabric-cutting department.

In the fabric-cutting scheduling problem, a group of jobs belonging to a defined
set of production orders with different due times is to be processed on one of the
parallel spreading tables. Earliness/tardiness scheduling with identical earliness
and tardiness penalties for all jobs has been shown to be NP-complete (Baker and
Schudder, 1990). In a more complex case when each job has its own earliness and
tardiness weightings, it is implausible that an optimal schedule for the real-sized
problem can be obtained by conventional time polyn