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  Preface 

 Practitioners in manufacturing and retail enterprises in the fashion industry, ranging 
from senior to front line management, constantly face complex and critical decisions. 
These decisions include site selection for manufacturing plant, production planning 
and scheduling, marker planning, cut order planning, production line balancing 
control, sales forecasting, recommendations about fashion trends and so on. 
Traditionally, such decisions depended on their experience and judgement. However, 
as the market has shifted to short production runs to meet rapidly changing demand, 
and costs have been squeezed in favour of just- in-time production methods, these 
decisions have become more complex. At the same time, apparel processing has 
become more automated and integrated, allowing greater control of the supply chain. 

 Recently, artifi cial intelligence (AI) techniques have received increasing attention 
from both practitioners and researchers in the apparel industry, and have been utilized 
to handle a variety of decision- making processes in apparel supply chain operations. 
A number of AI techniques, such as neural networks, genetic algorithms, fuzzy logic 
and evolutionary strategies, have been applied successfully. The ten chapters of this 
book provide a detailed coverage of the fundamentals and application of various 
artifi cial intelligence techniques to assist decision  makers in tackling key problems in 
the apparel supply chain. Chapter 1 discusses a range of key problems faced by apparel 
enterprises in apparel supply chain operations. Chapter 2 introduces the fundamentals 
of the main AI techniques which have been used in solving decision- making problems. 
The remaining eight chapters show how key problems in the apparel supply chain can 
be solved and solutions optimized by use of AI techniques. 

 The authors wish to express their sincere thanks to K.F. Au, S.F. Chan, J.T. Fan, 
W.H. Ip, C.K. Kwong, P.Y. Mok, X.X. Wang and X.H. Zeng for their contributions of 
material to individual chapters. 

   Dr Calvin Wong 
   Associate Professor 

 Institute of Textiles and Clothing 
 The Hong Kong Polytechnic University 

 Hunghom, Kowloon 
 Hong Kong 

 China 
 E-mail:  calvin.wong@polyu.edu.hk    
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                 2 
 Fundamentals of artifi cial 

intelligence techniques for apparel 
management applications  

    Z.  X.    GUO,    Sichuan University, China and      W. K.   WONG,   
 The Hong Kong Polytechnic University, China   

   DOI:   10.1533/9780857097842.13   

   Abstract:    The fundamentals of artifi cial intelligence (AI) techniques are 
introduced briefl y in this chapter. The defi nition, signifi cance and classifi cation 
of AI techniques are presented fi rst. Some representative AI techniques, 
especially those which have been used in solving decision- making problems 
in the apparel supply chain operations, are then introduced to help readers 
understand AI techniques used in subsequent chapters. These techniques 
include rule- based expert systems, evolutionary optimization techniques, 
feedforward neural networks and fuzzy logic. Their relevant fundamentals 
are introduced, including their origins, fundamental characteristics, possible 
applications and the procedures of implementation.  

   Key words:    expert system, evolutionary computation, neural network, 
fuzzy logic.   

    2.1  Artifi cial intelligence (AI) techniques: 

a brief overview 

 Artifi cial intelligence (AI) is a multidisciplinary subject which has attracted 
researchers from a variety of fi elds, such as computing, psychology, neuroscience, 
mathematics and linguistics. The popularity of AI techniques has been increasing 
rapidly in recent years; they currently cover a large variety of subfi elds in science 
and engineering, from general- purpose areas, such as decision- making, perception 
and logical reasoning, to specifi c tasks, such as robot control and disease diagnosis. 
AI techniques have received increasing attention from participants and researchers 
in the fashion industry over the last two decades, and have been utilized to handle 
a variety of decision- making processes in fashion supply chain operations, such as 
plant location selection, sewing assembly line balancing, production scheduling, 
marker making, sales forecasting and fashion recommendation. 

   2.1.1  Defi nition of AI 

 There is no precise defi nition of AI. Researchers from different fi elds defi ne AI 
differently. Researchers from computer science are usually interested in the 
creation of intelligent systems and programs capable of reproducing human- like 

�� �� �� �� ��
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behavior, such as understanding languages and learning from experience. On 
the other hand, engineering researchers place more emphasis on using AI as a 
problem  solver. 

 Russell and Norvig (1994) reviewed the defi nitions of AI and classifi ed 
them into four categories, including systems that (1) think like humans; (2) act 
like humans; (3) think rationally; and (4) act rationally. According to these 
defi nitions, AI techniques have the abilities (1) to artifi cially simulate the human 
brain; (2) to act intelligently as a human; (3) to actively learn and adapt as a 
human; (4) to process languages and symbols; and (5) to perform general 
intelligent action. 

 In this book, AI is defi ned as the study of how computer programs (systems) 
simulate intelligent processes, including learning, reasoning, associative memory, 
and understanding symbolic information in context.  

   2.1.2  Uses of AI 

 Problem- solving techniques can be roughly classifi ed as either traditional or AI. It 
is necessary to develop AI techniques because traditional techniques do not 
always solve scientifi c problems effectively due to ongoing scientifi c exploration. 
For example, they are ineffective in solving optimization problems with high 
problem complexity or large solution space. 

 Song  et al.  (1996) pointed out that ‘the engineering goal of AI is to solve real- 
world problems using AI as a tool to simulate human problem- solving capabilities’. 
AI techniques promise effective solutions to various problems due to their abilities 
to emulate intelligent processes, as opposed to traditional techniques. AI is also an 
effective supplement to natural intelligence because it builds intelligence into 
computer systems. The systems can effectively execute particular tasks, such as 
robot control, which can reduce human labor and mistakes. 

 AI techniques have the capability to tackle a wide range of real- world problems, 
including modeling, classifi cation, optimization and forecasting. These problems 
involve a large variety of application domains, including manufacturing and 
service industries, business and fi nance, computer science and telecommunications. 
Some real- world problems are very complex and intractable, such as production 
order planning, sewing assembly line balancing, and fashion sales forecasting.  

   2.1.3  Classifi cation of AI techniques 

 AI techniques can be roughly divided into two categories: symbolic AI and 
computational intelligence. The former focuses on development of knowledge- 
based systems while the latter focuses on development of a set of nature- inspired 
computational approaches. The latter primarily includes evolutionary 
computations, artifi cial neural networks and fuzzy logic systems. A brief 
introduction to these techniques begins on the next page. 
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  Knowledge- based systems 

 Knowledge consists of data and information, which are indispensable for drawing 
inferences and reaching conclusions. It can be implicit (e.g. practical skill or 
expertise) or explicit (e.g. theoretical understanding of a domain or a subject). 
Once knowledge is organized and represented in such a way that it can be 
identifi ed by computer programs, it often generates decision- making solutions as 
good as or even better than human experts. Knowledge- based systems were 
developed on the basis of this concept. 

 Knowledge- based systems are tools for establishing applications that make 
logical inferences and decisions from their stored knowledge of the problem 
domain (Hembry, 1990), aiming at supporting human decision- making, learning 
and action. To construct a knowledge- based system, one needs to focus on the 
acquisition, accumulation, representation and use of knowledge specifi c to a 
particular task. From the perspective of the end user, a knowledge- based system 
consists of three core components:

   •   Knowledge base: contains highly specialized and problem- related knowledge, 
such as rules, frames, cases, facts and heuristics.  

  •   Knowledge inference mechanism: provides solution recommendations for 
decision  makers and problem solvers.  

  •   User interface: bridges the gap between end users and the system, and entices 
more people to use the system with its user- friendliness.    

 There are two types of knowledge- based systems, expert systems and case- based 
reasoning systems, which have been widely applied in various fi elds, such as 
fashion matching recommendation, software engineering, computer vision, 
computer- aided design and production management. We will introduce the most 
popular knowledge- based system, the rule- based expert system, in Section 2.2.  

  Evolutionary computation 

 Evolutionary computation is an umbrella term for a range of evolutionary 
optimization techniques mainly inspired by optimum- seeking mechanisms from 
the real world, such as natural selection and genetic inheritance, which simulate 
evolution processes on a computer to iteratively improve the performance of 
solutions until an optimal (or feasible at least) solution is obtained. 

 Evolutionary optimization techniques make few or no assumptions about the 
problem being optimized. They are powerful in addressing complex optimization 
problems with large solution spaces and randomness, when traditional techniques 
fail to do so. These techniques are one of the fastest- growing areas of computer 
science and engineering, and are being increasingly widely applied to a variety of 
problems, ranging from practical applications in industry to leading- edge scientifi c 
research, such as large- scale production scheduling and stochastic combinatorial 
optimization. 
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 Broadly speaking, evolutionary computation includes evolutionary algorithms, 
such as genetic algorithms and evolution strategies, and swarm intelligence, 
such as ant colony algorithms, particle swarm optimization, artifi cial 
immune systems and harmony search. We will introduce several representative 
evolutionary optimization techniques in the fi eld of evolutionary computation in 
Section 2.3.  

  Neural network 

 An artifi cial neural network, usually called neural network (NN), is a computational 
model inspired by research into biological neural networks. An NN consists of a 
number of interconnected neurons (or nodes), which are analogous to biological 
neurons in the brain, according to some patterns of connectivity. In most cases, an 
NN is an adaptive system, which discovers the relationships between inputs and 
associated outputs by adjusting the network setting in terms of data patterns of 
training samples. 

 The history of NNs can be traced back to 1943, when physiologists 
McCulloch and Pitts established the model of a neuron as a binary linear 
threshold unit (McCulloch and Pitts, 1943). One of the most well- known features 
of NNs is that they can be used as universal approximators (Scarselli and Tsoi, 
1998; Zhang  et al. , 2012). In view of this feature, NNs have been widely applied 
to a variety of related problems, such as forecasting, modeling, classifi cation and 
clustering. 

 To construct an NN, one needs to decide the following three issues:

   •   Network architecture, including the number of input neurons, the number of 
hidden layers and hidden neurons, the number of output neurons, and the 
interconnections among these neurons.  

  •   Activation function, which determines the relationship between input and 
output of a neuron.  

  •   Learning algorithm, which determines the connection weights among network 
neurons.    

 According to different settings of the above issues, there exist many types of NN, 
such as feedforward NNs (FNNs), recurrent NNs and random NNs. We will 
introduce FNNs in Section 2.4.  

  Fuzzy logic 

 The term ‘fuzzy logic’ emerged in the development of the fuzzy set theory by 
Professor Lofti Zadeh (1965) at the University of California. Fuzzy logic has two 
distinct meanings. In a narrow sense, it is a generalization of various many- value 
logics that have been investigated in the area of mathematical logic. In a broad 
sense, fuzzy logic serves mainly as a system of concepts, principles, and methods 

�� �� �� �� ��



 Artifi cial intelligence techniques for apparel management 17

©  Woodhead Publishing Limited, 2013

for handling modes of reasoning with imprecise information. The purpose of 
researching fuzzy logic in the narrow sense is to provide fuzzy logic in the broad 
sense with a sound foundation. 

 Fuzzy logic is often referred to as ‘reasoning with uncertainty’, and provides a 
mechanism to handle vague or imprecise data in human reasoning and 
communication so that precise deductions can be made. Natural languages have a 
position of centrality in human reasoning and communication, which are 
pervasively imprecise and involve various vague linguistic terms. Vagueness of a 
linguistic term is a kind of uncertainty caused by imprecise meaning instead of 
information defi ciency. Fuzzy logic provides the capability of expressing 
imprecision in vague terms, which allows for approximate values and inferences 
as well as fuzzy or incompletely defi ned data as opposed to depending on crisp 
data, and also provides approximate solutions to problems that are hard for non- 
fuzzy methods to solve. 

 Fuzzy logic has achieved great success in a variety of applications over the last 
three decades. The most well- known applications have been in the area of control, 
ranging from simple control systems in consumer products (e.g. intelligent 
washing machines, air conditioners) to highly challenging control systems (e.g. 
voice- controlled robot helicopters). In addition, successful applications of fuzzy 
logic can also be found in manufacturing, transportation, image processing and 
computer vision, expert systems, decision- making, biological science and many 
other engineering and science areas.    

   2.2  Rule- based expert systems 

 Expert systems are computer programs that perform sophisticated decision 
tasks by emulating the decision- making abilities of human experts, and are 
built from explicit pieces of knowledge extracted from human experts. The 
extracted knowledge is a mixture of factual knowledge and heuristic knowledge, 
comprising intuition, judgement and logical inferences. Different representations 
have been proposed to represent knowledge effectively in an expert system, such 
as rules, semantics and frames, among which rules are the most commonly used. 
Expert systems using rules to represent knowledge are called rule- based expert 
systems. 

   2.2.1  Structure of rule- based expert systems 

 A general rule- based expert system consists of six components: knowledge 
base, knowledge acquisition facility, database, inference engine, explanation 
facility and user interface. A functional integration of these components 
is shown in  Fig. 2.1 . The functions of these components are described on the 
next page. 
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   •    Knowledge base : A knowledge base stores knowledge, such as problem- 
solving rules and intuition, which a human expert might use in solving 
problems in a given problem domain. A knowledge base can combine the 
knowledge of multiple human experts. In a rule- based expert system, 
knowledge is represented as a set of IF-THEN rules. A rule is a conditional 
statement that links given conditions to conclusions or actions. Once the 
condition part of a rule is satisfi ed, the rule is fi red and the conclusion part is 
executed.  

  •    Knowledge acquisition facility : This component provides a convenient and 
effi cient means for capturing all IF-THEN rules and stores them into the 
knowledge base. In some expert systems, it also provides an interactive way 
to enable a domain expert to input knowledge directly in runtime.  

  •    Database : This component stores a set of facts which are used to match the 
IF-THEN rules stored in the knowledge base.  

  •    Inference engine : This component carries out reasoning processes whereby 
the expert system reaches a solution, and links rules in the knowledge base 
with facts in the database. An inference engine decides which rules are 
satisfi ed, prioritizes them and executes those of the highest priority.  

  •    Explanation facility : It enables a user to understand how the expert system 
arrives at its conclusions. Keeping track of the fi red rules, the component 
presents a trace of reasoning that leads to a certain conclusion.  

  •    User interface : It provides a mechanism to support communication between 
the user seeking a solution and the system. It is determined at the time of 
system design.    

   2.1     Architecture of a rule- based expert system.     
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   2.2.2  Rule- based knowledge representation 

 In a rule- based expert system, rules provide a formal way of representing expert 
knowledge, which can represent relations, recommendations, directives, strategies 
and heuristics (Durkin, 1994). A rule consists of two parts: the IF part, called the 
antecedent (premise or condition), and the THEN part, called the consequent 
(conclusion). The basic syntax of a rule is: 

 IF <antecedent> 
 THEN <consequent> 

 The antecedent and consequent of a rule consist of two parts: an object and its 
value, which are linked by an operator. The operator identifi es an object 
and assigns a value. Operators, such as is, are, is not and are not, are usually 
used to assign a symbolic value to a linguistic term. Mathematical operators 
can also be used to defi ne an object as numerical and assign it a numerical value. 
For example, 

 IF the tardiness of materials >10 days 
 THEN production rescheduling is required. 

 A rule can have multiple antecedents joined by logic operators AND 
(conjunction), or OR (disjunction), and multiple consequents joined by AND. 
For example, 

 IF the shirt color is white AND the pants are black 
 THEN the mix- and-match change is not required. 

 IF the tardiness of materials >5 days 
 THEN production rescheduling is required 
 AND penalty weight =100%.  

   2.2.3  Inference techniques 

 In a rule- based expert system, the inference engine models and performs 
the reasoning of a human expert by using a collection of IF-THEN rules. 
To achieve this, an inference technique is used to determine when rules 
should be fi red and what solution can be fi nally reached. The inference technique 
compares each IF-THEN rule in the knowledge base with facts stored in 
the database. When the condition (IF) part of a rule matches a fact, the rule is 
fi red and its action (THEN) part is executed. Inference techniques aim at 
forming several rules in succession to construct a logical sequence of deduction, 
which is known as chaining. Two types of inference technique are commonly 
used, including forward chaining and backward chaining, which are introduced 
on the next page. 
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  Forward chaining 

 Forward chaining is a technique for gathering information and then inferring from 
it whatever can be inferred. The steps involved in forward chaining are described 
as follows.

   •    Step 1:  Obtain problem information from the user and put it in the database.  
  •    Step 2:  Scan the rules in the knowledge base in pre- specifi ed order to 

search for one whose antecedent (condition) matches the facts in the 
database.  

  •    Step 3:  Check if the rule is found in Step 2. If so, the rule is fi red and the rule’s 
conclusion part is added to the database.  

  •    Step 4:  Go to Step 2 to search for new matches until a solution is found or no 
further rules can be found.    

 It is clear that the order in which rules are fi red is determined by the facts available 
to the inference engine at that stage. Thus, forward chaining is data- driven 
reasoning, which works well when a problem naturally begins by gathering 
information and then examining what can be deduced from it. However, in 
forward chaining, many rules may be fi red even though they have nothing to do 
with the expected goal because forward chaining has no effective mechanism of 
recognizing and selecting which rules should not be used.  

  Backward chaining 

 Backward chaining is the opposite of forward chaining. It is goal- driven reasoning. 
In backward chaining, the rule- based expert system has a goal (a hypothetical 
solution) and the inference technique needs to fi nd evidence to prove it. The steps 
involved in backward chaining are described as follows.

   •    Step 1:  Search the rules in the knowledge base and look for one (or more) that 
contains the goal in its THEN part. This type of rule is called goal rule.  

  •   Step 2:     Check if the goal rule’s IF (antecedent) part is listed in the database. If 
so, go to Step 5; otherwise, go to Step 3.  

  •      Step 3:  Set the antecedent not listed in the database as a new goal (also called 
subgoal) for proof.  

  •    Step 4:  Go to Step 1 until the system fi nds an antecedent that is not supported 
by any rule.  

  •    Step 5:  The rule is fi red and the original goal is proved. The iterative process 
stops.    

 In backward chaining, the reasoning keeps the focus on the goal because it starts 
at the fi nal step of a possibly long chain of reasoning. Backward chaining works 
well when the problem naturally starts by informing a hypothesis and examining 
if it can be proven. 
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 In forward chaining and backward chaining, it is possible that no effective 
chaining can be formed to infer the original goal, which means that existing 
information (facts and rules) is insuffi cient and more facts or rules need to be 
provided. In addition, forward chaining and backward chaining can be combined 
to perform an inference task, which is usually used in applications where different 
tasks are naturally performed in either a data- driven or a goal- driven manner.    

   2.3  Evolutionary optimization techniques 

 The processes of optimum- seeking have been remarkably successful in lots of 
real- world phenomena, such as human evolution, food- seeking of ant colonies, 
and improvisation of musicians. By using stochastic heuristic individual searches 
and generation processes, these phenomena work toward a perfect individual to 
fi ll a particular environmental niche. It is naturally expected that evolutionary 
optimization processes can be created by modeling the behaviors of these 
phenomena. The evolutionary optimization techniques were thus developed to 
perform this function, which mimics the optimum- seeking processes of these 
phenomena in a computer program. 

 This section will introduce several representative evolutionary optimization 
techniques, including genetic algorithms (GA), evolution strategies (ES) and 
harmony searches (HS). 

   2.3.1  Optimum- seeking mechanism of evolutionary 
optimization techniques 

 Evolutionary optimization techniques have a similar optimum- seeking mechanism 
although they are inspired by different real- world phenomena. A general fl owchart 
of evolutionary optimization techniques is shown in  Fig. 2.2 . The procedures 
involved are described as follows.

   1.   Generate initial individual population: Each solution individual is usually 
generated randomly based on pre- specifi ed solution representation and 
population size.  

  2.   Evaluate solution individual: Evaluate the performance (fi tness) of solutions 
newly generated on the basis of a given performance measure.  

  3.   Check stopping criteria: Check if stopping criteria are met. If so, return the 
best individual as the optimal solution; otherwise, go to the next loop for 
generating new individuals.  

  4.   Generate new individuals: Each new individual is generated based on one or 
more individuals in the current population. Different evolutionary optimization 
techniques generate new individuals.  

  5.   Form next individual population: A specifi ed number of individuals are 
selected from the newly generated individuals and the current population to 
form the next population (also called offspring population).    
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 To design and develop an evolutionary optimization technique for tackling a 
problem, one needs to make a variety of design decisions, such as:

   •   choosing a particular paradigm that is suited for the problem  
  •   choosing an appropriate solution representation and population size  
  •   choosing an appropriate method to generate new individuals  
  •   choosing an appropriate mechanism to form the next population  
  •   choosing an appropriate performance measure to evaluate individuals  
  •   choosing an appropriate stopping criterion.     

   2.3.2  Brief introduction to genetic algorithm 

 The GA is the most popular technique in the family of evolutionary computation, 
which is inspired by the principles of genetics and natural selection – Darwin’s 
‘survival of the fi ttest’ theory. The origin of the GA can be traced back to the 
early 1950s, when several biologists used computer programs to perform 
simulations of biological systems (Goldberg, 1989). However, the popularization 
of GAs is accredited to the work (Holland, 1975) done in the late 1960s and early 
1970s under the direction of John Holland. 

 The optimum- seeking mechanism of a GA is analogous to the biological 
evolutionary process. The GA operates on a population of chromosomes (also 
called individuals). Each chromosome represents a feasible solution to the 
problem investigated. Different representations have been developed to represent 

   2.2     General fl owchart of evolutionary optimization techniques.     
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chromosomes, such as real- coded representation and order- based representation. 
According to evolutionary theories, only the chromosomes adapting to the 
environment in the parental population are likely to survive and generate offspring 
by transmitting their biological heredity to the offspring population (next 
population). The offspring chromosomes are generated by using a set of 
biologically inspired genetic operators, including selection, crossover and 
mutation. The offspring are supposed to inherit excellent genes from their parents 
so that the average quality of solutions is better than in previous generations. 

  Figure 2.3  shows the fl owchart of a canonical GA. GAs work iteratively. Each 
single iteration is called a generation. In each generation, the fi tness of 
each chromosome is evaluated and determined by the fi tness function. When the 
fi tness function value of a chromosome is larger, the chromosome becomes 
fi tter, indicating that the chromosome has a bigger opportunity to survive in the 
next generation. This evolution process is repeated until some stopping criteria 
are met. Selection operators determine which chromosomes are selected for 
mating from the current generation. Crossover and mutation operators are 
employed to create offspring chromosomes based on chromosomes selected by 
selection operators. The entire set of generations is called a run. At the end of a 
run, one or more chromosomes with the highest fi tness values are taken as optimal 
solutions. 

   2.3     Flowchart of a canonical genetic algorithm (GA).     
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    2.3.3  Brief introduction to evolution strategy 

 The evolutionary strategy (ES) is another intelligent optimization technique of 
mimicking natural evolution, which was invented by Ingo Rechenberg and Hans-
Paul Schwefel in the early 1960s (Rochenberg, 1965; Schwefel, 1975) to solve 
parameter optimization problems. 

 The general fl owchart of an ES is shown in  Fig. 2.4 , which is very similar to that 
of a GA. The only difference is that an ES uses only one genetic operator (mutation). 
The earliest ES model, termed as (1 + 1)-ES, was based on a population having one 
individual (chromosome) only. Generally ESs are based on the population of  μ  
( μ    > 1) individuals, which makes them less prone to getting stuck in the local optima 
(Hansen and Kern, 2004). In these ESs, a new (offspring) individual is generated by 
randomly selecting a parental individual to undergo mutation. In each generation,  λ  
offspring are generated. ESs can be classifi ed into ( μ , λ )-ES and ( μ  +  λ )-ES. The two 
types use different strategies to generate populations of the next offspring generation:

   ( μ , λ )-ES: The next population consists of  μ  best individuals from the population 
of  λ  newly generated offspring.  

  ( μ  +  λ )-ES: The next population consists of  μ  best individuals from  μ  parents and 
 λ  newly generated offspring.    

 The ES is modifi ed to handle combinatorial optimization problems, although it 
was initially developed for continuous optimization. In addition, some researchers 
extended the ES to recombination, which leads to more general notation  
 -ES.  ρ  refers to the number of parents involved in the generation of one offspring 

   2.4     Flowchart of a canonical evolution strategy (ES).     
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(mixing number). For  ρ   = 1, we have ES cases ( μ , λ ) and ( μ  +  λ ) without 
recombination. For  ρ   > 1, we have ES cases with recombination. Like GAs facing 
different optimization problems, different individual representations and 
evolutionary operators in ESs are required to adapt themselves to these problems.  

   2.3.4  Brief introduction to harmony search 

 Some evolutionary optimization techniques do not originate in natural evolution. 
The HS is a relatively new evolutionary optimization algorithm developed by 
Geem  et al.  (2001), which is inspired by musicians’ improvisation of their 
instruments’ pitches to search for perfect harmony. 

 The HS generates a new individual (solution vector) by considering all existing 
vectors, whereas traditional evolutionary algorithms (such as ES and GA) only 
consider one or two parental individuals. This distinct feature of the HS increases 
the algorithm’s fl exibility so that it can generate better solutions than conventional 
mathematical methods or GA- and ES-based approaches (Lee and Geem, 2004; 
Mahdavi  et al. , 2007). 

 The fl owchart of an HS is shown in  Fig. 2.5 . The initial harmony memory is 
generated randomly, in which each harmony (individual, solution vector) v 
represents a distinct feasible solution of all decision variables. That is, v = [ v  1 ,  v  2 , 
. . .,  v   P  ]. The performance (fi tness) of each harmony is evaluated and determined 
by the fi tness function. When the fi tness function of a harmony is larger, the 
performance of the harmony is better. This evolution process is repeated until 

   2.5     Flowchart of a harmony search (HS).     
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some stopping criteria are met. After the fi tness values of all individuals in the 
population are calculated, two HS procedures, memory consideration and pitch 
adjustment, are used to improvise a new harmony (or generate a new solution 
vector). Generating a new harmony is called improvisation.   

   2.4  Feedforward neural networks (FNNs) 

 Feedforward neural networks (FNNs) are the most common type of NN, which 
have been used in a wide variety of real- world applications, including pattern 
recognition and classifi cation, system identifi cation and control, and forecasting. 
Applications of FNNs in fashion supply chain operations involve prediction, 
classifi cation and model identifi cation (Guo  et al. , 2011). 

   2.4.1  Brief introduction to FNN 

 FNNs are a type of NN in which connections among units do not travel in a loop 
but in a single directed path. Typically, an FNN consists of an input layer of 
neurons (nodes), one or more hidden layers of neurons, and an output layer 
of neurons. The input layer and output layer form bookends for hidden layers of 
neurons. Signals are propagated from the input layer to hidden neurons and then 
onto output neurons, which output responses of the network to outside users. That 
is, signals only move in a forward direction on a layer- by-layer basis.  Figure 2.6  
shows a typical FNN with one hidden layer. 

   2.6     Feedforward neural network (FNN) with one hidden layer.     
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 In the NN, a neuron is a mathematical function conceived as abstraction of 
biological neurons.  Figure 2.7  shows a typical neuron. A neuron receives signals 
from its inputs  x   i   ( i   = 1, . . .,  n ) (representing one or more dendrites) and an 

externally applied bias  b . The weighted summation    of these 

input signals is then passed through activation function  f  ( X ) to generate output 
signal  Y  (representing a biological neuron’s axon). It is clear that

     .

 In this equation, the effect of the bias is considered by: (1) adding a new input 
signal fi xed at + 1, and (2) adding a new synaptic weight equal to bias  b . That is, 
 x  0  = 1,  w  0  =  b . The input signal  x   i  ( i  = 1, . . .,  n ) can be raw data or outputs of other 
neurons. Output signal  Y  can be either a fi nal solution to the problem or an input 
to other neurons. It should be noted that, for simplicity, the NN shown in  Fig. 2.6  
does not include bias signals, which is feasible in practical applications. 

 Various FNNs have been presented, including backpropagation networks, 
extreme learning machine networks, learning vector quantization networks, self- 
organizing map networks and radial basis function networks. These FNNs are 
capable of approximating generic classes of functions (Scarselli and Tsoi, 1998; 
Zhang  et al. , 2012) and are constructed in terms of different settings from the 
following three perspectives. 

  Network architecture:  In traditional FNNs, neurons are by default fully 
connected between neighboring layers ( Fig. 2.6 ) in order to simplify the network 
design, although fully connected NNs are biologically unrealistic (Wong  et al. , 
2010). To simplify the network structure and improve the generalization capability 
of FNNs, some partially connected FNNs have been developed (Wong  et al. , 

   2.7     Diagram of a neuron.     
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2010; Elizondo and Fiesler, 1997). However, fully connected FNNs are still 
dominant because designing partially connected FNNs is complicated and usually 
data- dependent. In FNNs, backpropagation networks can have more than one 
hidden layer, while ELM networks and radial basis function networks have only 
one hidden layer each. 

  Activation function:  Every neuron has its own activation function and 
generally only two activation functions are used in a particular NN. Neurons in 
the input layer use the identity function as the activation function. That is, the 
output of an input neuron equals its input. The activation functions of hidden and 
output layers can be differentiable and non- linear in theory. Several ‘well- behaved’ 
(bounded, monotonically increasing and differentiable) activation functions 
are commonly used in practice, including: (1) the sigmoid function  f  ( X ) = 
(1 + exp(− X )) −1 ; (2) the hyperbolic tangent function  f  ( X ) = (exp( X ) − exp(− X ))/
(exp( X ) + exp(− X )); (3) the sine or cosine function  f  ( X ) = sin( X )  or f  ( X ) = cos( X ); 
(4) the linear function  f  ( X ) =  X ; (5) the radial basis function. Among them, the 
sigmoid function is the most popular, while the radial basis function is only used 
for radial basis function networks. 

  Learning algorithm:  Traditionally, NN learning is an algorithmic procedure 
whereby parameters (such as weights) of an NN are estimated. Within this framework, 
two categories of learning are considered: supervised learning and unsupervised 
learning. Learning can be ‘supervised’ since an NN should fulfi ll a function known 
in some or even all points: a ‘teacher’ provides sample data of inputs and corresponding 
outputs of a task that an NN should perform. The most popular supervised learning 
algorithm is the backpropagation algorithm. In contrast to supervised learning, 
unsupervised learning does not require a ‘teacher’. During the learning process, an 
NN receives a number of input patterns, discovers signifi cant features in these 
patterns and learns how to classify input data into categories appropriately. The most 
popular unsupervised learning algorithm is the self- organizing map.  

   2.4.2  Backpropagation network 

 The backpropagation (BP) network is the most commonly used FNN. Its structure 
is the same as that shown in  Fig. 2.6  except that it can contain more than one 
hidden layer. A BP algorithm is used for BP network learning, which is described 
in detail below. 

 Given a desired output response vector  d  = [ d  1 ,  d  2 , . . .,  d   p  , . . .,  d   P  ], the learning 
algorithm performs an optimization process to fi nd optimal connection weights so 
that each output error  e   p  , defi ned as the error between the desired output  d   p   and the 
output of network  o   p  , is minimized. That is,    
 where

     .
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 Consider an FNN with  L –1 ( L >2) hidden layers. Let  neuron ( i ,  l ) be the  i th neuron 
in layer  l , and  w   l    ji   be the connection weight between  neuron (   j ,  l ) and  neuron ( i ,  l  − 
1).  I    l    ji   denotes the  i th input of  neuron (  j ,  l ), which is equal to the output  o   l −1   i   of 
 neuron ( i ,  l  − 1) (i.e.  I    l    ji   =  oi  

  l−1     ). The BP algorithm can be implemented on the basis 
of the following steps:

   •    Step 1:  Set a learning rate  η  (0 ≤  η  ≤ 1).  
  •    Step 2:  Set all connection weights  w   l    ji  (0) to random numbers uniformly 

distributed inside a small range. A feasible empirical range (Haykin, 1994) is 
(−2.4/ N     l    j   , + 2.4/ N     l    j    ), where  N     l    j    is the total number of inputs of  neuron (   j ,  l  ).  

  •    Step 3:  Select a random input pattern with its corresponding target output.  
  •    Step 4:  Assign to each neuron in the input layer the appropriate value in the 

input vector. Feed this input to all neurons in the fi rst hidden layer.  
  •    Step 5:  For  neuron (   j , l ) in hidden and output layers (i.e. 2 ≤  l  ≤  L ), calculate its 

total input  net    l    j  ,

        

 where  I    l    j 0  equals 1,  w   l    j 0   equals the bias  b   l    j   applied to  neuron (   j ,  l ). The output of 
this neuron is  f  ( net    l    j  ).  f (·) is the activation function that can be any function 
with bounded derivatives.

   •    Step 6:  Calculate the error signal at output neuron  neuron ( k ,  L ),

      .

  •    Step 7:  Calculate the error signal for each neuron  neuron (   j , l ) in hidden layers 
(2 ≤  l  ≤  L  − 1),

      .

  •    Step 8:  Update the weights for all layers  w   l    ji  ( n  + 1) =  w   l    ji  ( n ) +  ηδ    l    j    I   
 l    ji    .

  •    Step 9:  Continue at Step 3.     

   2.4.3  Extreme learning machine network 

 The major drawback of the BP network is its slow convergence speed caused by 
the local minima. The extreme learning machine (ELM) network has the capability 
of providing better generalization and much faster learning speed than BP 
networks. The ELM network is a type of novel FNN, which was developed by 
Huang  et al.  at Nanyang Technological University, Singapore, in 2004 (Huang 
 et al. , 2004). Compared with BP networks, ELM networks contain only one 
hidden layer and use ELM algorithms as learning algorithms. 
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 The structure of the ELM network is shown in  Fig. 2.6 . It is assumed that the 
ELM network with  m  hidden neurons and activation function  f  ( x ) is trained to 
approximate  N  distinct samples (u  i  ,y  i  ) with zero error means, where u  i   is the input 
of samples and u  i   = [ u   i 1 , u   i 2 , . . .,  u   in  ] 

T  ∈ R  n  , y  i   is the output of samples and 
y  i   = [ y   i 1 , y   i 2 , . . .,  y   ip  ] 

T  ∈ R  p  . In ELM networks, input weights and hidden biases are 
generated randomly. Non- linear ELM networks can thus be converted into the 
following linear system. 

 M β  = T, (1) where M = { h   ij  } ( i  = 1, . . .,  N  and  j  = 1, . . .,  m ) denotes the hidden- 
layer output matrix,  h   ij   =  f (w  j   · u  i   +  b   j  ) is the output of the  j th hidden neuron 
 neuron (   j , 2) with respect to u  i  ; w  j   = [ w   j 1 ,  w   j 2 , . . .,  w   jn  ] 

T  is the weight vector 
connecting  neuron ( j , 2) and input neurons, and  b   j   denotes the bias of  neuron ( j , 2); 
w  j   · u  i   denotes the inner product of w  j   and u  i  ;  β  = [ β  1 , . . .,  β   j  , . . .,  β   m  ] 

T  ( j  = 1, . . ., 
 m ) is the matrix of output weights and  β   j   = [ β   j 1 ,  β   j 2 , . . .,  β   jp  ] 

T  denotes the weight 
vector connecting  neuron ( j , 2) and output neurons; Y = [y 1 ,y 2 , . . ., y  N  ] 

T  is the 
matrix of targets (desired outputs). 

 The determination of output weights between hidden and output layers is to 
fi nd the least- square solution to the given linear system. The minimum norm 
least- square solution to linear system (1) is  β  ̂   = M†Y, where M† is the Moore–
Penrose generalized inverse of matrix M. The minimum norm least- square 
solution is unique and has the smallest norm among the least- square solutions. 

 Compared with BP algorithms, ELM has much faster learning and convergence 
speed because its network weights are obtained by using random generation and 
a least- mean squares method based on a Moore–Penrose’s generalized inverse, 
instead of using iterative weight adjustment. In addition, ELM can avoid 
diffi culties experienced by BP algorithms, such as selection of stopping criteria, 
learning rate and learning epochs, due to its distinct learning mechanism.  

   2.4.4  Learning vector quantization network 

 Learning vector quantization (LVQ) is a supervised learning technique invented 
by Teuvo Kohonen (1988; 1990). The LVQ network is the precursor of the self- 
organizing map NN. Both of them are based on the Kohonen layer, which is 
capable of sorting items into categories of similar objects with the aid of training 
samples, and are widely used for classifi cation. 

 Topologically, an LVQ network consists of an input layer, a single Kohonen 
layer (also known as competitive or hidden layer) and an output layer.  Figure 2.8  
shows the structure of an LVQ network. The Kohonen layer contains a number of 
neurons placed in the nodes of a lattice, which maps input vectors into clusters that 
are found by the network during training. The output layer merges groups of 
previous layer clusters into classes defi ned by target data. Unlike traditional FNNs, 
the neurons between the Kohonen layer and the output layer are not fully connected. 

 LVQ procedures are intuitively clear and easy to implement. The classifi cation 
of data is based on a comparison with a number of so- called prototype vectors. 
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Prototypes are determined in training from labeled examples and can be interpreted 
in a straightforward fashion as they directly represent typical data in the same 
input space, in contrast with adaptive weights in FNNs, which do not allow 
immediate interpretation easily. 

 The procedures of LVQ permit only the update of winning prototypes (i.e. the 
closest prototype of the LVQ network). The prototype vector  w  is moved in 
the direction of the input vector  x  if the class of the input vector and that of the 
prototype vector match. Otherwise, the prototype vector  w  is moved away from 
the direction of the input vector  x . LVQ proceeds as follows:

   •    Step 1. Initialization:  Initialize the prototype vectors { w   j  (0) |  j  = 1,2, . . .,  N }. 
by setting them equal to the fi rst N exemplar input vectors { x   i   |  i  = 1,2, . . .,  L }. 
Usually,  L  >  N .  

  •    Step 2. Sampling:  Draw a sample (vector)  x  from the input data;  x  represents 
the new pattern input for LVQ.  

  •    Step 3. Similarity Matching:  Find the best matching prototype vector  w   j   at 
time  n  based on the minimum- distance Euclidean criterion:

      .

  •    Step 4. Adaptation:  Adjust only the best matching prototype vector, while the 
others remain unchanged. It is supposed that a prototype vector  w   c   is 
the closest to the input vector  x   i  . Let  C   w   c    denote the class associated with the 

   2.8     Structure of learning vector quantization (LVQ) network.     
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prototype vector  w   c  , and  C   x   i  
  denote the class label of the input vector  x   i  . The 

prototype vector  w   c   is adapted as follows:

      .

     The learning constant  α   n   (0 <  α   n   < 1) is chosen as a function of the discrete 
time parameter  n . It is desirable for the learning constant  α   n   to decrease 
monotonically with the number of iterations  n .  

  •    Step 5. Termination Checking:  Stop if there are no noticeable changes in the 
above procedures. Otherwise, go to Step 2.    

 One of the advantages of LVQ is that it creates prototypes that are easy for experts 
to interpret in the respective application domain. The key issue of LVQ is to 
choose an appropriate measure of similarity for training and classifi cation. The 
original method relies on the Euclidean distance corresponding to the assumption 
that data can be represented by isotropic clusters. To provide more general metric 
structures, some alternative techniques have been proposed (Schneider  et al. , 
2009), such as relevance adaptation in generalized LVQ (GLVQ) and matrix 
learning in GLVQ.   

   2.5  Fuzzy logic 

 Fuzzy logic is not logic that is fuzzy, but a kind of precise logic of imprecision and 
approximate reasoning. Humans usually rely on practical knowledge and judgement 
to solve problems. Human knowledge is often vague and ambiguous. For example, 
a piece of practical knowledge might be: ‘Though the material delivery is slightly 
delayed, the production schedule can remain unchanged.’ It is unclear how many 
days constitute a slight delay. Fuzzy logic attempts to model human reasoning 
with imprecise and incomplete knowledge. Through fuzzy logic, a system cannot 
only represent such imprecise concepts as slow, late and expensive, but also use 
these concepts to make precise deductions with imprecise data. 

   2.5.1  Uses of fuzzy logic 

 The real world is pervaded with fuzziness. Most human knowledge is described in 
natural languages for describing perceptions. Due to the intrinsic impreciseness of 
human perceptions, natural languages are pervasively imprecise in the sense that 
almost everything admits of degrees therein. For example, linguistic terms, such 
as distance, area, speed and temperature, are all expressed on a sliding scale. The 
distance between Hong Kong and London is very far. The area of Russia is very 
large. Rabbits run very fast. The boiler temperature is very high. The values of 
these linguistic terms are vague and imprecise. Classical Boolean or conventional 
logic is not capable of capturing and expressing the vagueness of linguistic terms. 
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 Boolean logic uses sharp distinctions and forces us to separate members of a 
class from non- members. For example, one may regard lower than 180 cm as short 
and higher than 180 cm as tall. Based on this standard, Mike, who is 178 cm, is 
short. However, Boolean logic cannot decide whether Mike is really short or the 
standard is just arbitrarily set. Such absurdities can be avoided by using fuzzy logic. 

 Unlike two- valued Boolean logic, fuzzy logic is an extension of multi- valued 
logic. Instead of just completely true or false, fuzzy logic accepts that things can 
be partly true and partly false at the same time, which is consistent with human 
reasoning. Fuzzy logic also deals with degrees of truth by using the continuum of 
logical values between 0 (completely false) and 1 (completely true). Therefore, 
fuzzy logic is more accurate than Boolean logic in dealing with fuzzy reality.  

   2.5.2  Fuzzy set 

  Fuzzy set representation 

 The fuzzy set theory is an outgrowth of the classical set theory. First, recall the 
classical set theory, which views the world as either black or white. Let  X  be the 
universe of discourse and  x  be its elements. According to the classical set theory, 
crisp set  A  of  X  is defi ned by the characteristic function  f   A  ( x ) of set  A .

  f   A  ( x ):  X  → 0, 1  

 where

     

 Based on the fuzzy set theory, fuzzy set  A  of  X  is defi ned by its membership 
function  μ   A  ( x )

  μ   A  ( x ):  X  → [0, 1]  

 where

     

 For any element  x  of universe  X , membership function  μ   A  ( x ) equals the degree to 
which  x  is an element of set  A . This degree represents the degree of membership, 
also known as the membership value of element  x  in set  A . The most commonly 
used membership functions are triangular, trapezoidal, piecewise linear and 
Gaussian functions because they are easily prepared and computationally fast. 
The choice of membership functions is largely arbitrary because there is no 
theoretical justifi cation for using one rather than another. The number of 
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membership functions is dependent on users. More membership functions can 
achieve greater resolution but also cause greater computational complexity.  

  Linguistic variables and hedges 

 The idea of linguistic variables is essential to development of the fuzzy set theory. 
Fuzzy logic is primarily associated with quantifying and reasoning out imprecise 
or vague terms that appear in our languages. These terms are referred to as linguistic 
or fuzzy variables. For example, the statement ‘the completion date is late’ implies 
that the linguistic variable ‘completion date’ takes on the linguistic value ‘late’. 

 The range of possible values of a linguistic variable represents the variable’s 
universe of discourse. For example, the universe of discourse of the linguistic 
variable ‘completion date’ might have the range between 1 and 10 days, and 
include fuzzy subsets such as early, normal and late. 

 A linguistic hedge is an operation that modifi es the meaning of a fuzzy set, 
which can be understood as terms that modify the shapes of fuzzy sets by using 
adverbs such as  very ,  quite ,  more ,  less  and  slightly . It is assumed that we have 
already defi ned a fuzzy set to describe a late completion date. If we need to talk 
about how late the completion date is, we can use a hedge to change the fuzzy set. 
For example,  very late ,  moderately late  and  slightly late  are examples of hedges 
applied to the fuzzy set of the late completion date. 

  Figure 2.9  shows an application of hedges (very). The universe of discourse – 
men’s heights – consists of fi ve fuzzy sets:  very short ,  short ,  average ,  tall  and  very 
tall . For example, a man 180 cm tall is a member of the  tall  set with a degree of 
membership of 0.5 and a member of the  very tall  set with a degree of membership 
of 0.2. 

   Fuzzy set operations 

 Fuzzy set operations are a generalization of crisp set operations, each of which is 
a fuzzy set operation. In fuzzy logic, three operations, including fuzzy complement, 
fuzzy intersection and fuzzy union, are the most commonly used. Let fuzzy sets  A  

   2.9     Fuzzy sets with hedge.     
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and  B  be described by their membership functions  μ   A  ( x ) and  μ   B  ( x ). The three 
fuzzy set operations are defi ned below.

   •    Fuzzy complement:  The complement of a fuzzy set is the opposite of the set 
in question. The fuzzy complement of fuzzy sets  A  can be represented as

  μ  ~ A  ( x ) = 1 −  μ   A  ( x )   .

  •    Fuzzy intersection:  Fuzzy intersection is the fuzzy operation for creating the 
intersection of fuzzy sets  A  and  B  on the universe of discourse X, which can 
be obtained as:

  μ   A ∩ B  ( x ) = min( μ   A  ( x ),  μ   B  ( x )) =  μ   A  ( x ) ∩  μ   B  ( x ), where  x  ∈  X    .

  •    Fuzzy union:  The union of two fuzzy sets is the reverse of their intersection. 
That is, the fuzzy union is the largest membership value of the element in 
either set. The fuzzy union for forming the union of fuzzy sets  A  and  B  on the 
universe of discourse X can be given as:

  μ   A ∪ B  ( x ) = max( μ   A  ( x ), μ   B  ( x )) =  μ   A  ( x ) ∪  μ   B  ( X ), where  x  ∈  X        .

   2.5.3  Fuzzy rule 

 In one of his most infl uential papers, Lotfi  Zadeh presented an outline of a new 
approach to analysis of complex systems and decision processes (Zadeh, 1973). 
He suggested using fuzzy rules to capture and express human knowledge. Human 
knowledge is usually in the form of ‘if- then’ rules, which can be easily implemented 
by fuzzy conditional statements. 

 A fuzzy rule is defi ned as a conditional statement in the form:

 IF  x  is  A  THEN  y  is  B   

 where  x  and  y  are linguistic variables;  A  and  B  are linguistic values determined by 
fuzzy sets on the universes of discourse  X  and  Y , respectively. 

 Fuzzy reasoning involves two parts: evaluating the rule antecedent (the IF part 
of the rule) and applying the result to the consequent (the THEN part of the rule). 
Like the rules in expert systems, a fuzzy rule can have multiple antecedents joined 
by fuzzy operators AND or OR, or multiple consequents joined by fuzzy operator 
AND. For example: 
 IF the delivery date is late AND the tardiness penalty is high, THEN the production 
cost is high. 
 IF the material delivery date is late, THEN the completion date is late AND the 
tardiness penalty is high.  

   2.5.4  Fuzzy logic system 

 A fuzzy logic system maps crisp inputs into crisp outputs using the theory of 
fuzzy sets. In a fuzzy logic system, an inference engine works with fuzzy rules. 
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The engine takes inputs, some of which may be fuzzy, and generates outputs, 
some of which may be fuzzy. The fuzzy core of the inference engine is bracketed 
by one step that can convert crisp data into fuzzy data, and another step that does 
the reverse.  Figure 2.10  shows the general procedures involved in a fuzzy logic 
system as follows. 

  Fuzzifi cation of input data 

 The fi rst step is to take the crisp input  x  and determine the degree to which the 
input belongs to each of the appropriate fuzzy sets. 

 Fuzzifi cation is the process of mapping crisp input  x  ∈  U  into fuzzy set  A  ∈  U . 
This is achieved with three different types of fuzzifi er, including singleton 
fuzzifi ers, Gaussian fuzzifi ers, and trapezoidal or triangular fuzzifi ers. These 
fuzzifi ers map crisp input  x  into fuzzy set  A  with different membership functions 
 μ   A  ( x ) listed below. 

   2.10     The general structure of a fuzzy logic system.     
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 Membership function of singleton fuzzifi er:

     .

 Membership function of Gaussian fuzzifi er:

      

 where { a   i  , i  = 1, . . .,  n } are positive parameters. 
 Membership function of triangular fuzzifi er:

     

 where { b   i  , i  = 1, . . .,  n } are positive parameters.  

  Evaluation of fuzzy rules 

 After input data are fuzzifi ed and their membership values obtained, the next step 
involves application of them to the antecedents of fuzzy rules. If a given fuzzy 
rule has multiple antecedents, a fuzzy operator (AND or OR) is used to obtain a 
single number that represents the result of antecedent evaluation. This number is 
then applied to a consequent membership function. 

 AND is used to evaluate the conjunction of rule antecedents. Typically, fuzzy 
logic systems utilize the classical fuzzy operation intersection to implement this 
operation. Consider fuzzy rule 1:

 If  x  is A AND  y  is B, then  z  is C.  

 Assume  μ   A  ( x ) = 0.1,  μ   B  ( y ) = 0.6, then we have  μ   C  ( z ) = min[ μ   A  ( x ), μ   B  ( y )] = 0.1. 
 Similarly, OR is used to evaluate the disjunction of rule antecedents, which is 

implemented by the classical fuzzy operation union in fuzzy logic systems. 
Consider fuzzy rule 2:

 If  x  is A OR  y  is B, then  z  is C.  

 Assume  μ   A  ( x ) = 0.1,  μ   B  ( y ) = 0.6, then we have

  μ   C  ( z ) = max[ μ   A  ( x ), μ   B  ( y )] = 0.6.   

  Aggregation of outputs of fuzzy rules 

 Several fuzzy rules often provide fuzzy information about the same variable and 
different outputs must be combined. Aggregation is the unifi cation of outputs of 
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all fuzzy rules. That is, aggregation takes membership functions of all rules’ 
consequents and combines them into a single fuzzy set. Fuzzy set operations, such 
as union and intersection, can be used to implement aggregation.  

  Defuzzifi cation of the output 

 The last step in a fuzzy logic system is defuzzifi cation. As the name suggests, 
defuzzifi cation is the opposite of fuzzifi cation, which produces crisp output  y ' for 
a fuzzy logic system from the aggregated output of fuzzy set  B . A number of 
defuzzifi ers have been developed; the most popular is the centroid defuzzifi er, 
which fi nds a vertical line and divides an aggregated set into two equal portions. 
Mathematically the center of gravity ( COG ) can be defi ned by:

     .

 In addition to centroid defuzzifi ers, maximum defuzzifi ers and means of maxima 
defuzzifi ers are also commonly used.

   •    Maximum Defuzzifi er:  This defuzzifi er chooses  y  ' as the point at which 
associated membership functions achieve their maximum values.  

  •    Mean of Maxima Defuzzifi er:  This defuzzifi er examines fuzzy set  B , 
determines values for which associated membership functions achieve their 
maximum values and computes the mean of these values as its output  y  '.       

   2.6  Conclusions 

 This chapter provides a brief introduction to the family of AI techniques so that 
readers can gain a basic understanding of the AI family and various AI techniques, 
and understand the subsequent chapters more easily. This chapter introduces the 
defi nition of artifi cial intelligence and presents a brief overview of artifi cial 
intelligent techniques. Some representative AI techniques are briefl y introduced, 
all of which have been used for decision making in the fashion supply chain. We 
also discuss the origins of these techniques, fundamental characteristics, and 
possible applications as well as the procedures to implement them. 

 A number of research outputs show the effectiveness of AI techniques for 
decision making in the fashion industry, as well as their superiority over classical 
approaches (Guo  et al. , 2011). The subsequent chapters will introduce several 
representative applications of AI in the fashion supply chain. 

 The fashion supply chain is characterized by short product life cycles, volatile 
and unpredictable customer demands, tremendous product variety, labor- intensive 
production, and long supply processes. These distinct features increase the 
complexity of decision making in the fashion supply chain. As a result, research 
on AI applications in the fashion industry is still limited, although great research 

�� �� �� �� ��



 Artifi cial intelligence techniques for apparel management 39

©  Woodhead Publishing Limited, 2013

advances have been made so far. A great number of issues are worthy of research, 
for example, production planning and control with unreliable material supplies 
and dynamic customer demands, and retail replenishment with uncertain delivery 
dates by apparel manufacturers.   
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   Abstract:    The direct investment and joint ventures of clothing manufacturers 
in developing regions have grown rapidly over the last few decades. 
Manufacturers have encountered diffi culties when selecting the plant location 
however, because their decisions are based on subjective judgments and 
inconsistent assessments rather than on a clear classifi cation system. 
Variances between potential plants cannot always be represented in terms 
of objective value, such as country risk and community facilities. Clothing 
manufacturers must also consider more intangible factors such as the social 
environment and political stability when deciding the most appropriate site 
for production. Classifi cation methods are a more effi cient and less time- 
consuming way of organizing a number of sites into different levels of 
appropriateness, thereby allowing clothing manufacturers to make more 
informed and objective decisions about plant locations. This chapter 
investigates two recent types of classifi cation technique; unsupervised 
and supervised artifi cial neural networks. The limitations of the adaptive 
resonance theory of the unsupervised artifi cial neural network are 
demonstrated in this chapter and a comparison of the performance of the 
three types of supervised artifi cial neural network, back propagation, 
learning vector quantization and probabilistic neural network are presented. 
The supervised artifi cial neural network has proved to be an effective classifi er 
in which the probabilistic neural network performs better than in the other 
networks on the site selection problem.  

   Key words:    clothing manufacture, artifi cial neural network, plant 
location.   

    3.1  Introduction 

 In clothing manufacture, decisions about using overseas production sites are 
regarded as complicated because of numerous location factors as well as the 
complexity caused by trade agreements instituted with trade blocs such as 
NAFTA, EU or AGOA. The changing market dynamics have forced companies 
to consider macro- environmental factors including economic, social, political, 
legal and technological issues as well as micro- environmental factors such as 
customers, competitors and suppliers (Uncu  et al. , 2002). Plant location decisions 
for foreign direct investment have therefore created problems for clothing 
manufacturers. 
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 Different decision-making techniques have been developed to assist with the 
selection of plant locations. These techniques include: scaling (ranking or scoring) 
methods (Hoffman and Schniederjans, 1994); the analytic hierarchy process 
(Yurimoto and Masui, 1995); mathematical programming (Brimberg and Revelle, 
1999; Schmidt and Wilhelm, 2000); heuristic algorithms (Ronnqvist, 1999; Verter 
and Dasci, 2002) and simulation (Chakravarty, 1999). Various types of artifi cial 
intelligence techniques (Liang and Wang, 1991; Yurimoto and Masui, 1995; Kuo 
 et al ., 2002; Au  et al ., 2006) have also been used to search for optimal sites. 

 These techniques depend on the subjective judgement of the manufacturer and 
therefore rely heavily on their knowledge and experience. Additionally, in cases 
where sites have only slightly different scores, it is diffi cult to conclude that site 
A is really better than site B at a particular moment or under different conditions. 
Classifi cation methods are an effi cient and less time- consuming way of organizing 
a number of sites into different levels of location appropriateness so that clothing 
manufacturers can make their selection more easily.  

   3.2  Classifi cation methods using artifi cial 

neural networks 

 Several recently proposed classifi cation techniques, which use artifi cial neural 
networks (ANN) and fuzzy logic, are very promising candidates for decision- 
making applications. These techniques can be divided into two general categories: 
(a) supervised techniques in which labeled training samples are used for optimizing 
the design parameters of the classifi cation system; and (b) unsupervised 
techniques, or automatic classifi cation using data clustering algorithms. Different 
types of ANN can act as the classifi er, including back propagation (BP), learning 
vector quantization (LVQ), and probabilistic (P) networks, which are supervised 
techniques, as well as adaptive resonance theory (ART) and self- organizing 
feature maps (SOFM), which are unsupervised ones. Supervised neural networks 
use an omniscient input which is presented during training in order to learn what 
the correct answer should be. This type of neural network performs well in a 
multiple criteria decision- making problem. Contrastingly, the unsupervised neural 
network has no knowledge of the correct answer and cannot know exactly what 
the correct response should be. This type of unsupervised neural network has 
some limitations in multiple criteria decision- making. The details of these 
techniques are further discussed in Section 4. 

   3.2.1  Back propagation networks 

 Back propagation is a supervised learning technique, which is capable of 
computing a functional relationship between its input and output. In general, 
the BP network is multilayered, fully connected and most useful for feed- 
forward networks. The fi rst and last layers are called the input and output layers, 
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respectively. The layer/s between the input layer and the output layer is/are called 
the hidden layer/s. 

 Several researchers have demonstrated that during training, a BP network tends to 
develop internal relationships between the nodes so as to organize the training data 
into classes of patterns (Freeman and Skapura, 1992). The key concept of the BP 
network is that given the training inputs, there is an internal representation to generate 
the desired outputs. This same internal representation can be applied to inputs that 
were not used during training. The BP network will classify these previously unseen 
inputs according to the features they share with the training examples.  

   3.2.2  Learning vector quantization networks 

 The learning vector quantization network was developed by Teuvo Kohonen in 
the mid-1980s (Teuvo, 1995). It is known as a kind of supervised ANN model and 
is mostly used for statistical classifi cation or recognition. Topologically, the LVQ 
network contains an input layer, a single LVQ layer and an output layer. The 
network can be trained to classify inputs while preserving the inherent topology 
of the training set. LVQ not only offers ways to interpret behavior, but can also be 
trained using an appropriate distance measure. The architecture of the LVQ 
network means that it can perform more accurate classifi cations in many types of 
problem (Luo  et al ., 2003).  

   3.2.3  Probabilistic networks 

 The probabilistic network is a non-linear and non-parametric pattern recognition 
algorithm, originally introduced by Donald Specht in the 1980s. The P network 
operates by defi ning a probability density function (PDF) for each data class 
based on the training set data and the optimized kernel width parameter (Specht, 
1990). It is a three- layer network, composed of the input layer, the radial basis 
layer, and the competitive layer. The radial basis layer of the P network is the core 
of the algorithm. During the training phase, the pattern vectors in the training set 
are simply copied to the radial basis layer of the P network. Unlike other types of 
ANN, the P network has only a single adjustable parameter. This parameter, 
termed sigma ( σ ), or kernel width, along with the members of the training set, 
defi nes the PDF for each data class. Each PDF is composed of exponential- shaped 
kernels of width  σ  located at each pattern vector. The PDF essentially determines 
the boundaries for classifi cation (Hammond  et al ., 2004).   

   3.3  Classifying decision models for the location 

of clothing plants 

 The proposed decision model for classifying clothing plant location using neural 
networks can be separated into two sequential phases: the learning (preference 
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assessing) phase and the executing (decision-making) phase. The goal of 
the learning phase is to train the neural network with the prior knowledge in 
terms of the experts’ experience, whereas the goal of the executing phase is to 
obtain the most desirable alternative based on the constructed neural network 
model. The fl ow chart of the proposed classifi cation decision model is shown in 
 Fig. 3.1 . 

 Unlike the conventional methods of location selection, this model does not 
require that the weight of each factor be determined, which is often a very diffi cult 
and time- consuming task. Instead, classifi cation of the selected alternatives with 
associated preference relations according to the prior knowledge is required. The 
ANN is therefore essentially used to establish the classifi cation decision rule 
about locating a clothing plant based on only a limited number of the selected 
sites.  Figure 3.2  illustrates the learning process of the ANN classifi cation model. 
The ANN can thus act as a rational proxy on behalf of the decision-maker to 
evaluate and classify any alternatives. 

   3.1     Flow chart of the classifi cation decision model of site selection 
for clothing plant.     
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   3.3.1  Identifi cation of location factors 

 The analytic hierarchy process (AHP) is one of the most extensively used multi- 
criteria decision-making methods. One of the main advantages of this method is 
that it is able to relatively easily handle multiple criteria. After reviewing the 
information in related publications and ascertaining the experts’ opinion of the 
industry, we established 10 important factors on level 1 of the AHP, which we 
further divided into 16 related sub- factors at level 2 in the clothing plant location 
problem, each with appropriate evaluation indices.  Figure 3.3  shows the 
hierarchical structure of location factors in the selection of clothing production 
sites. After identifying the location factors, a set of representative sites for locating 
clothing plants would be chosen for classifi cation. This study focuses on 20 sites 
and is mostly concerned with Hong Kong clothing suppliers. Quantitative 
measures of all factors for each site were collected and computed based on  The 
World Competitiveness Yearbook  (International Institute for Management 
Development, 2002) and related government publications. 

    3.3.2  Classifi cation based on multi- attribute utility model 

 The next step was to produce rank ordered lists of the sites based on their suitability 
for locating clothing production sites. Although we can refer the classifi cation of 
the chosen sites to the experts by questionnaire, the multi- attribute utility (MAU) 
model, a traditional systematic model for scoring, is more suitable for dealing 
with this classifi cation problem, which will be utilized to benchmark the relative 
performance of the proposed ANN classifi cation decision model. The MAU 
model can be mathematically stated as follows:

     

   3.2     Learning process of artifi cial neural network.     
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        S   j   = suitability index calculated for country 
  j  = candidate country number 
  i  = location factor number 
  w   i   = weight assigned to factor i 
  x   ij   = normalized value assigned to factor i for country  j  
  n  = number of location factors 
  m  = number of candidate locations   

 The resultant suitability indices of the alternative candidates for locating clothing 
manufacturing sites are shown in  Table 3.1 . The sites are classifi ed into four 
groups based on a subjective grouping of the suitability indices. 

   3.3     Hierarchical representation of location factors for clothing 
manufacturing sites selection.     

�� �� �� �� ��



 Selecting the location of apparel manufacturing plants 47

©  Woodhead Publishing Limited, 2013

     3.4  Classifi cation using unsupervised artifi cial 

neural networks (ANN) 

 Gaber and Benjamin utilized the adaptive resonance theory (ART2), a typical 
unsupervised ANN, in classifying US manufacturing plant locations (Gaber and 
Benjamin, 1992). In their study, the ART2 yielded results similar to those obtained 
using the MAU model and its’ performance was very encouraging. However, this 
method has limitations when dealing with classifi cation decision problems as 
demonstrated in the following example: 

 Assuming that seven sites (S1, S2, S3, S4, S5, S6 and S7) were chosen, they 
should be classifi ed based on their suitability for establishing a clothing plant. In 
order to assess the ability of ART2 for classifying the sites, the MAU model was 
fi rst employed for classifi cation. To elaborate this example clearly, four factors 
F1, F2, F3 and F4 to assess the sites were defi ned. The tentative scores of the 
seven sites are shown in  Table 3.2 . 

 To calculate the suitability indices of the seven sites, the weight of four factors 
should randomly be assigned fi rst. Five random cases of the weights of the four 
factors were assumed as shown in  Table 3.3 .  Table 3.4  illustrates the resultant 
suitability indices in each case after computation. Based on the suitability indices 
of the fi ve cases, the seven sites could be classifi ed into three groups, namely 

    Table 3.1     Grouping and suitability indices for 
locating clothing manufacturing sites  

 Group  Suitability index  Candidate site 

  A   0.6894   China  
 0.6831   Pakistan  
 0.6622   India  
 0.6482   Thailand  
 0.6419   Sri Lanka  

  B   0.5973   Philippines  
 0.5803   Cambodia  
 0.5777   Mauritius  
 0.5750   Myanmar  
 0.5724   Vietnam  
 0.5715   Bangladesh  
 0.5698   Indonesia  
 0.5663   South Africa  

  C   0.5543   Malaysia  
 0.5359   Mexico  
 0.5305   Taiwan  
 0.5218   Turkey  

  D   0.4854   Israel  
 0.4518   Brazil  

   0.3839   Argentina  
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Groups A, B, and C. Those sites with scores greater than 0.70 were classifi ed as 
Group A, those with scores ranging from 0.40 to less than 0.70 were classifi ed 
as Group B and those sites with scores less than 0.40 were classifi ed under 
Group C, as shown in  Table 3.5 . 

 In  Table 3.5 , the variance of the weights of the factors has a great infl uence 
on the classifi cation results, which could lead to an opposite result. For example, 
the classifi cation results of site ‘S7’ is Group A, B and C in cases 3, 4 and 5, 
respectively. On the other hand, after using ART2, the seven sites were classifi ed 
based on the data stated in  Table 3.2 . The result is shown in  Table 3.6 . 

    Table 3.2     Tentative scores for the 
seven sites  

 Sites  F1  F2  F3  F4 

 S1  0.8  0.8  0.8  0.8 
 S2  0.2  0.4  0.8  0.8 
 S3  0.2  0.4  0.1  0.6 
 S4  0.4  0.2  0.8  0.5 
 S5  0.1  0.1  0.1  0.1 
 S6  0.3  0.8  0.6  0.1 
 S7  0.8  0.1  0.6  0.3 

    Table 3.3     Five cases of the weights of the 
four factors  

 F1  F2  F3  F4 

 Case 1  0.25  0.25  0.25  0.25 
 Case 2  0.4  0.1  0.1  0.4 
 Case 3  0.85  0.05  0.05  0.05 
 Case 4  0.05  0.05  0.85  0.05 
 Case 5  0.05  0.85  0.05  0.05 

    Table 3.4     Resultant suitability indices of the fi ve cases  

 Sites  Case 1  Case 2  Case 3  Case 4  Case 5 

 S1  0.8000  0.8000  0.8000  0.8000  0.8000 
 S2  0.5500  0.5200  0.2700  0.7500  0.4300 
 S3  0.3250  0.3700  0.2250  0.1450  0.3850 
 S4  0.4750  0.4600  0.4150  0.7350  0.2550 
 S5  0.1000  0.1000  0.1000  0.1000  0.1000 
 S6  0.4500  0.3000  0.3300  0.5700  0.7300 
 S7  0.4500  0.5100  0.7300  0.5700  0.1700 
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 Comparing the results of the ART2 in  Table 3.6  with that of the MAU model in 
 Table 3.5 , the following points can be addressed:

   1.   The classifi cation result of ART2 only produced a unique result due to its 
automatic classifi cation characteristic. This implies that ART2 cannot refl ect the 
infl uence of different levels of importance of the factors on the suitability indices.  

  2.   Though both vectors S1 and S5 differ only in amplitude in  Table 3.2 , they are 
classifi ed into different groups which can seen in  Table 3.5 . In  Table 3.6 , they 
are classifi ed into the same group since one of ART2 characteristics is that 
vectors that are just simple multiples of each other are treated as the same group.    

 Based on the above analysis, it can be concluded that the unsupervised ANN is 
inappropriate for solving the classifi cation decision problem. The performances 
of several supervised ANN were thus investigated for their use in the proposed 
model.  

   3.5  Classifi cation using supervised ANN 

   3.5.1  Classifi cation using the back propagation network 

 The fi rst ANN classifi er used in the proposed model was a two- layered 
feed- forward network trained with the BP. The network received 16 real values 

    Table 3.5     Classifi cation results of the seven sites of 
the fi ve cases  

 Sites  Case 1  Case 2  Case 3  Case 4  Case 5 

 S1  A  A  A  A  A 
 S2  B  B  C  A  B 
 S3  C  C  C  C  B 
 S4  B  B  B  A  C 
 S5  C  C  C  C  C 
 S6  B  C  C  B  A 
 S7  B  B  A  B  C 

    Table 3.6     Classifi cation result using ART2  

 Sites  Group 

 S1  A 
 S2  C 
 S3  C 
 S4  B 
 S5  A 
 S6  A 
 S7  B 
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of the sub- factors as a 16-element input vector in order to identify the sites by 
responding with a 4-element output vector representing 4 classes of site suitability. 
The network responded with a value of 1 in the position of the site being presented 
to the network, while all other values in the output vector would be 0. The 
architecture of BP is shown in  Fig. 3.4 . 

 The network was formulated as a two- layered log- sigmoid/log- sigmoid 
network in which the log- sigmoid transfer function was employed since its 
output range was perfect for learning the output bipolar values, i.e. 0 and 1. 
The hidden layer had 29 neurons after trial test (for details, please see 
Table A1.1 in the Appendix). In order to identify the class for each input vector, 
the network was trained to output a value of 1 in the correct position of the output 
vector and fi ll the rest of the output vector with 0’s. Since the exact 1’s and 0’s 
could not be produced by the output of the network during the simulation process, 
it was necessary to pass the output through the competitive transfer function 
‘compete’ in order to ensure that the output value must be 1 while the others 
have a value of 0. 

 Among the 20 sites, 15 sites were selected randomly as training samples and 
the other 5 sites were used for testing.  Table 3.7  summarizes the results of the 
correct classifi cation of the fi ve testing sites. The percentage shown in the table 
represents the number of correct classifi cation times out of 1000 trials in which 
random initial weights were used in each trial. In each trial, the network was 
trained until the squared error was less than 0.000001. 

   3.4     Notation of the architecture of BP network.     

    Table 3.7     Percentage of the correct classifi cation using BP network  

 Testing site  Original 
group 

 Percentage of times of 
the correct classifi cation 

  Sri Lanka   A  81.2% 
  Philippines   B  97.6% 
  South Africa   B  88.5% 
  Malaysia   C  90.0% 
  Brazil   D  93.5% 
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    3.5.2  Classifi cation using the learning vector 
quantization network 

 The second type of ANN classifi er used in the classifi cation decision model was 
the learning vector quantization (LVQ) network, which had a competitive and 
linear layer. The proposed LVQ network had a 16-element input neuron (16 
location factors at level 2 for clothing manufacturing sites selection in  Fig. 3.3 ) 
and a 4-element output neuron (4 classifi ed groups). The number of the hidden 
layer had 10 neurons, which was also determined by trial test (for details, please 
see Table A1.2 in the Appendix). The architecture of the LVQ network is shown 
in  Fig. 3.5 . In order to train the LVQ network, the LVQ2 learning rule (Kohonen, 
1997) was applied to improve the performance. Similar to the former BP method, 
1000 trials were conducted to classify the sites. In each trial, the training epoch 
was set at 200. The percentage of correct classifi cation of the fi ve testing sites is 
presented in  Table 3.8 . 

   3.5     Abbreviation notation of the architecture of LVQ network.     

    Table 3.8     Percentage of the correct classifi cation using LVQ network  

 Testing site  Original 
group 

 Percentage of times of the 
correct classifi cation 

  Sri Lanka   A  100% 
  Philippines   B  100% 
  South Africa   B   83% 
  Malaysia   C  100% 
  Brazil   D  100% 

    3.5.3  Classifi cation using the probability network 

 The last type of ANN classifi er employed is the probabilistic (P) network, which 
is a feed- forward neural network in which a Bayesian decision strategy for 
classifying input vectors is implemented (Freeman, 1994). The P network has a 
16-element input neuron and a 4-element output neuron.  Figure 3.6  depicts the 
architecture of a P network. 
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   3.6     The abbreviation notation of the architecture of P network.     

    Table 3.9     Percentage of the correct classifi cation using P network  

 Testing site  Original 
group 

 Percentage of times of the 
correct classifi cation 

  Sri Lanka   A  100% 
  Philippines   B  100% 
  South Africa   B  100% 
  Malaysia   C  100% 
  Brazil   D  100% 

 In  Fig. 3.4 , the transfer functions of this network in the fi rst and second layer 
are the common ‘radbas’ and ‘compet’ function, respectively. The hidden layer 
had 15 neurons which were set by the algorithm of the probabilistic neural network 
being equal to the number of the testing samples.  Table 3.9  indicates that after 
1000 trials were conducted, the percentage of correct classifi cation of the 5 testing 
sites is 100 which outperformed the BP and LVQ network. 

     3.6  Conclusion 

 In this chapter, the limitations of adaptive resonance theory of unsupervised 
artifi cial neural network were demonstrated and it was concluded that this 
classifi cation technique is inappropriate for solving the classifi cation decision 
problem. Three types of supervised artifi cial neural network, including back 
propagation, learning vector quantization and probabilistic neural network were 
compared. The results in  Tables 3.7 ,  3.8  and  3.9  indicate that these three supervised 
artifi cial neural network yielded over 80 % of the correct classifi cation, which is 
benchmarked with the result generated from the multi- attribute utility model. The 
supervised artifi cial neural network is thus proved to be a competent and effective 
classifi er for use in the decision- making domain. Of the three supervised artifi cial 
neural network methods, the probabilistic network performs best since it is based 
on probability. Better and possibly even optimal classifi cation results could be 
acheived by further investigation and by trying to combine the strengths of various 
types of classifi ers.  
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   3.9  Appendix: performance of back propagation (BP) 

and learning vector quantization (LVQ) with a 

different number of hidden neurons                      

    Table A1.1     Performance of BP with different number of hidden neurons  

 Number of hidden neurons 

 9  19  29  49 

 Train MSE  1.01e-06  1.28e-06  1.14e-06  1.37e-06 
 Test MSE  0.15  0.101  0.064  0.069 

   Note: The mean squared error of training is 0.000001     

    Table A1.2     Performance of LVQ with different number of hidden neurons  

 Number of hidden neurons 

 5  8  10  15 

 Train MSE  0.075  0.089  0.058  0.021 
 Test MSE  0.138  0.058  0.034  0.068 

   Note: The training epoch is set at 200     
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   Abstract:    In this chapter the order scheduling problem at the factory level is 
investigated. Various uncertainties are considered and described as random 
variables. A mathematical model for this order scheduling problem is presented 
with the objectives of maximizing the total satisfaction level of all orders and 
minimizing their total throughput time. Uncertain completion time and 
beginning time of production process are derived from probability theory. A 
genetic algorithm is developed to seek after the optimal order scheduling 
solution. Experiments are conducted to validate the proposed algorithm by 
using real- world production data. The experimental results show the 
effectiveness of the proposed algorithm.  

   Key words:    order scheduling, uncertain processing time, probability theory, 
genetic algorithms.   

    4.1  Introduction 

 Faced with ever- increasing global market competition, today’s manufacturers 
have to continuously improve their production performance so as to be more 
competitive in the market. Effective production scheduling plays a signifi cant role 
in maximizing resource utilization and shortening production lead times. A large 
number of studies have been published on production scheduling. These have 
focused mostly on the scheduling for various types of production systems at the 
shop- fl oor or assembly- line level, such as job shop scheduling (Adam  et al. , 1993; 
Fayad and Petrovic, 2005; Guo  et al. , 2006; Kondakci and Gupta, 1991), fl ow 
shop scheduling (Ishibuchi  et al. , 1994; Iyer and Saxena, 2004; Morita and Shio, 
2005; Nagar  et al. , 1996), machine scheduling (Baek and Yoon, 2002; Dimopoulos 
and Zalzala, 2001; Fowler  et al. , 2003; Liu and Tang, 1999), assembly line 
scheduling (Guo  et al. , 2008; Kaufman, 1974; Vargas  et al. , 1992; Zhang  et al. , 
2000), etc. 

 Ashby and Uzsoy (1995) have presented a set of scheduling heuristics to solve 
the order release and order sequencing problem in a single- stage production 
system. Axsater (2005) has discussed the order release problem in a multi- stage 
assembly network by an approximate decomposition technique. Their studies 
only focused on determining the starting times for different processes of each 
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production order. Chen and Pundoor (2006) have considered order assignment 
and scheduling in the supply chain, focusing on assigning orders to different 
factories and fi nding a schedule for processing the assigned orders at each factory. 
However, multiple shop fl oors and multiple assembly lines are set up in most 
factories. The order scheduling problem at the factory level, involving scheduling 
the production process of each order to the appropriate assembly line, has not 
been reported so far. 

 The great majority of previous studies on production scheduling are based 
on the deterministic estimation of the processing time of each production process 
and the arrival time of each order. In real- life production environments, various 
uncertainties often occur, such as uncertain customer orders, uncertain estimation 
of processing time, and so on. Deterministic estimation does not refl ect industrial 
practice and will lead to an unsatisfactory scheduling solution. Moreover, without 
considering these uncertain factors, it is diffi cult to achieve an optimized production 
schedule in a real- life production environment. As an example, if a schedule is 
generated without considering possible orders in the future, new rush orders may 
interrupt those already scheduled, causing serious disruption of due dates. 

 This chapter will investigate the order scheduling problem at the factory level, 
in which each production process corresponds to a unique shop fl oor comprising 
one or multiple assembly lines. The objectives are fi rst to maximize the total 
satisfaction level of orders’ actual competition times, and also to minimize these 
orders’ total throughput time by determining which assembly line to use and when 
the production process of each order should be processed. In a make- to-order 
manufacturing environment, it is very important to predict whether the due date 
can be satisfi ed before receiving a new order from the customer and to schedule 
the production of each process in different assembly lines. A typical example is 
apparel manufacturing. 

 Some possible uncertainties in order scheduling will also be investigated in this 
chapter. We consider the uncertain processing time as a continuous random 
variable, and uncertain orders as well as arrival times as discrete random variables. 
On the basis of the stochastic processing time, the stochastic beginning time and 
completion time of processes are derived using the probability theory approach. 
The genetic algorithm (GA) will be adopted to solve the order scheduling problem, 
in which a novel process order- based representation with variable length of sub- 
chromosome is presented. 

 The rest of this chapter is organized as follows. Section 4.2 defi nes the notations 
which are used in this chapter. A detailed problem formulation for the order scheduling 
problem is presented fi rst in Section 4.3. Section 4.4 explains how to calculate the 
stochastic beginning time and completion time. The proposed GA to solve the 
addressed order scheduling problem is introduced in Section 4.5. In Section 4.6 
experiments are conducted to validate the effectiveness of the proposed methodology 
using real production data from an apparel manufacturing factory. Lastly, concluding 
remarks are presented and further research is suggested in Section 4.7.  
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   4.2  Problem formulation 

 This section explains the formulation of the order scheduling problem in an order- 
based manufacturing factory. Production processes of each order should be 
performed in different types of shop fl oors respectively. Each type of shop fl oor 
comprises one or more assembly lines. According to a pre- determined production 
fl ow, production processes involved in each order must be completed on an 
assembly line of the corresponding shop fl oor. For simplicity, we assume that 
there is no work in progress (WIP) in each shop fl oor. 

 The real- life manufacturing environment is subject to the following constraints:

   •   Arrival constraint: Order  P   i   cannot be started until the arrival of this order, i.e.

  A   i   ≤  B   i 1 . [4.1]   

  •   Allocation constraint: Production process  R   ij   can be only processed in the 
corresponding shop fl oor which can process it, i.e.

   . [4.2]   

  •   Each production process must be performed, i.e.

   . [4.3]   

  •   Process precedence constraint: For one order, each process cannot start before 
its preceding process is completed and the order is transported to the 
corresponding assembly line, i.e.

  C   ij   +  ET   ij   ≤  B   ij′  ,  R   ij   ∈  SP ( R   ij′  ). [4.4]   

  •   Processing time constraint: Process  R   ij   must be assigned processing time, i.e.

  C   ij   =  B   ij   +  T   ijkl  . [4.5]     

 In this chapter,  T   ijkl   is represented as a random variable whose probability density 
function is defi ned as

    . [4.6]  

 A graph of  f  ( T   ijkl  ) is shown in  Fig. 4.1 , in which the values of  t   L  ,  τ ,  p   L   and  p   U   are 
predetermined constants. The four constants can decide uniquely the proposed 
probability distribution of processing time, and the vector form ( t   L  ,  τ ,  p   L  ,  p   U  ) can 
thus be used to represent the probability density function of this type. Based on 
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the given vector, the values of  k  1 ,  b  1  and  b  2  in Eq. 4.6 can be obtained easily. 
Moreover, since the total probability in the sample space is 1, the following 
relationship exists:

 ( p   L   +  p   U  ) ·  τ  = 2. [4.7]  

 Because order  P   i   can be uncertain or have uncertain arrival and/or processing 
times, the above constraints 1–4 are required to be satisfi ed for each possible 
realization to accurately model the uncertainties. 

 In the make- to-order factory, one of the most important production objectives is 
to meet the due dates of production orders. Since the processing time of production 
process is uncertain probabilistically, the completion time of each production 
order is also uncertain. It is diffi cult to evaluate directly whether the due dates are 
met. In this chapter, the total satisfactory level  SL  is used to evaluate the 
performance of all orders to meet their due dates, which is expressed as follows:

    [4.8]  

 where  f  ( C   i  ) is the probability density function of the actual completion time  C   i   of 
order  P   i  .  s ( C   i  ) describes the relationship of  C   i   with its satisfactory level, which is 
defi ned as

   . [4.9]  

   4.1     Probability distribution of processing time.     

�� �� �� �� ��



 Optimizing apparel production order planning scheduling 59

©  Woodhead Publishing Limited, 2013

 A graph of  s ( C   i  ) is shown in  Fig. 4.2 . The values of  k  3 ,  k  4 ,  b  3  and  b  4  can be obtained 
based on the given three coordinates in this fi gure. These coordinate values are 
determined by the decision  maker. The closer  C   i   is to its due date, the higher the 
satisfactory level of  C   i  . Moreover, the decrease of the satisfactory level is faster 
when  C   i   >  D   i   than when  C   i   <  D   i  . This is because the former will lead to tardiness 
penalties, which are greater than the earliness penalties generated by the latter. 

 The primary objective of the addressed problem is to maximize the total 
satisfactory level  SL , which is expressed as

   . [4.10]  

 Based on the optimized total satisfactory level, the secondary objective of the 
addressed problem is to minimize the expected value of total throughput time  TT  
of all orders, which is expressed as follows:

    [4.11]  

 where  C   i   −  B   i 1  is the throughput time of order  P   i   and  E (·) denotes the expected 
value of a random variable.  

   4.2     Relationship between  C   i   and its satisfactory level.     

   4.3  Dealing with uncertain completion and 

start times 

 In a real- life apparel manufacturing environment, uncertain start time and 
completion time of operations invariably occur and must be dealt with. 
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   4.3.1  Completion time of production process 

 The completion time  C   ij   of process  R   ij   is determined by its beginning time and 
processing time. Since the beginning time and the processing time are independent, 
the probability density function of  C   ij   is equal to the convolution of probability 
density functions of its beginning time and processing time according to the 
theory of probability.  

   4.3.2  Start time of production process 

 Since both the processing time and the completion time of process  R   ij   are uncertain, 
the beginning time of  R   i,j +1 , the subsequent process of  R   ij  , is also uncertain. Consider 
a production situation: production processes  R  12  and  R  22  are assigned to assembly line 
 L  21  for processing, and the probability density functions of the completion time of  R  12  
and  R  21  are determined by vectors ( t   L 1 ,  τ  1 ,  p   L 1 ,  p   U 1 ) and ( t   L 2 ,  τ  2 ,  p   L 2 ,  p   U 2 ), respectively, 
which are shown in  Fig. 4.3  (assume  t   L 1  ≤  t   L 2 ).  R  22  is the subsequent process of  R  21 . 
Process  R  22  cannot begin until processes  R  12  and  R  21  are both completed. 

 The probability density function of the beginning time  B  22  of  R  22  is computed as 
follows: 

 If  t   L 1  +  τ  1  ≤  t   L 2 ,  B  22  is determined by the completion time of  R  21  and has the same 
probability density function as the completion time  C  21  of  R  21 . 

 If  t   L 1  +  τ  1  >  t   L 2  ≥  t   L 1 ,  B  22  is determined by the completion times of  R  12  and  R  21 . The 
beginning time  B  22  will locate between  t   L 2  and  t   L 2  +  τ  2 , and its cumulative probability 
distribution functions  F ( B  22 ) in several different intervals are respectively as follows:

    [4.12]  

   4.3     Probability distributions of processing times of processes  R  12  
and  R  21 .     
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 where  P  1  21 ,  P   
2  21 ,  P  3  21  are the cumulative probability distributions of the completion 

time  C  21  of  R  21  falling into ( t   L 2 ,  t   X  ), ( t   X   ,  t   L 1  +  τ  1 ) and ( t   L 1  +  τ  1 ,  t   L 2  +  τ  2 ), respectively, 
and  P  3  12  is the cumulative probability distribution of the completion time  C  12  of  R  12  
falling into ( t   X  ,  t   L 1  +  τ  1 ). 

 The probability density function  f  ( B  22 ) of  B  22  is

    [4.13]  

 where  g (·) is the probability density function of the completion time of  R  21  and 
 h (·) is the probability density function of the completion time of  R  12 .   

   4.4  Genetic algorithms for order scheduling 

 The order scheduling problem addressed here is categorized as the combinational 
optimization problem of NP-hard type (Ross and Corne, 2005) and the number of 
its possible solutions grows exponentially with the number of assembly line, 
orders and processes. It is very diffi cult for the classical technique to solve this 
type of problem. Since the GA has been proven to be very powerful and effi cient 
in fi nding heuristic solutions from a wide variety of applications (Goldberg, 
1989), it is adopted in this chapter. 

 The GA was fi rst introduced by Holland (1975). It is a global heuristic search 
technique whose mechanism is based on the simplifi cations of evolutionary 
processes observed in nature. It is an iterative procedure which maintains a 
population of chromosomes representing different possible solutions to a problem. 
Each single iteration is called a generation. In each generation, the fi tness of 
each chromosome is evaluated, which is decided by the fi tness function, and 
some chromosomes are selected as the parental chromosomes. Based on the 
parental chromosomes, new chromosomes, called offspring (also called child 
chromosomes), are reproduced by two genetic operators, crossover and mutation. 
The offspring are supposed to inherit the excellent genes from their parents, so 
that the average quality of solutions is better than that in the previous generations. 
This evolution process is repeated until some termination criterion is met. The 
following sub- sections describe in detail how the GA is developed to solve the 
addressed order scheduling problem. 

   4.4.1  Representation 

 The fi rst step in constructing the GA is to defi ne an appropriate genetic 
representation (coding). A good representation is crucial because it signifi cantly 
affects all the subsequent steps of the GA. In this research, a process order- based 
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representation with variable length of sub- chromosome is developed. Each 
chromosome is composed of some sub- chromosomes. Each sub- chromosome 
represents an assembly line and the value of each gene in the sub- chromosome 
represents a process which the corresponding assembly line performs. The length 
of sub- chromosome, i.e. the number of genes in the sub- chromosome, is variable. 
If one sub- chromosome comprises multiple genes, it indicates that the 
corresponding assembly line performs multiple processes according to the gene 
sequence in the sub- chromosome. 

  Figure 4.4  shows two examples of this representation which describe 16 
processes from 5 orders to be assigned to 6 assembly lines of 4 shop fl oors. As 
shown in  Fig. 4.4 , each chromosome includes 6 sub- chromosomes which are 
separated by brackets. The lengths of the sub- chromosomes corresponding to 
assembly line 1 of shop fl oor 1 are different (3 and 2, respectively). Two feasible 
solutions corresponding to the two chromosomes, represented as an array of 
length 16, are:

 [( R  11 ,  R  41 ,  R  51 ) ( R  21 ,  R  31 ) ( R  12 ,  R  32 ,  R  52 ) ( R  13 ,  R  23 ,  R  43 ) ( R  24 ,  R  34 ,  R  54 ) 
( R  14 ,  R  44 )]  

 and

 [( R  11 ,  R  41 ) ( R  21 ,  R  31 ,  R  51 ) ( R  12 ,  R  32 ,  R  52 ) ( R  13 ,  R  23 ,  R  43 ) ( R  24 ,  R  34 ,  R  54 ) 
( R  14 ,  R  44 )]  

 Based on each solution, we can obtain the process assignment for different 
assembly lines and the processing sequence of these processes. For example, 
according to the fi rst sub- chromosome of chromosome 1, three processes,  R  11 ,  R  41  
and then  R  51 , will be performed in order in the assembly line 1 of shop fl oor 1.  

   4.4.2  Initialization 

 The GA starts with an initial population of chromosomes. Either heuristic 
procedures or random creations can be used to generate feasible chromosomes 
that form the initial population. Anderson and Ferris (1994) have mentioned that 
the performance of the GA scheme is not as good from the pre- selected starting 

   4.4     Sample of the chromosome representation.     
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population as it is from a random start. In this research each chromosome 
is randomly initialized by assigning the processes of all orders to the 
assembly lines which can handle it. The initialization process can be described as 
follows:

   •    Step 1.  Initialize parameters: index  i  = 1, a population size  u , population  POP  
= { ϕ }.  

  •    Step 2.    Randomly generate a chromosome  CHR   i  ,  POP  =  POP  ∪  CHR   i  .  
  •    Step 3.    Set  i  =  i  + 1. If  i  >  u , STOP, else go to Step 2.    

 The procedure for randomly generating a chromosome is as follows:

   •    Step 1.    Initialize parameters: the number of assembly lines in shop fl oor  S   k   is 
 LQ   k  , the number of shop fl oors in the factory is  SQ , and shop fl oor index  k  is 
equal to 1.  

  •   Step 2.     Randomly divide the processes of all orders, which need be performed 
in shop fl oor  S   k  , into  LQ   k   set of processes. Each set of processes forms a sub- 
chromosome.  

  •      Step 3.  Place the generated sub- chromosomes into the corresponding positions 
of the chromosome in turn.  

  •   Step 4.     Set  k  =  k  + 1. If  k  >  SQ , STOP, else go to Step 2.     

   4.4.3  Fitness and selection 

 Fitness function is defi ned as the fi tness of each chromosome to determine which 
will reproduce and survive into the next generation, which is relevant to the 
objective functions to be optimized. The value of fi tness function of a chromosome, 
fi tness, represents the probability of its survival. The greater the fi tness of a 
chromosome, the greater the probability it will survive. 

 In this research, objective functions 4.10 and 4.11 can be combined as below:

    [4.14]  

 where  γ  denotes the objective weight used to adjust the weighted relationship 
between the satisfaction level objective and the throughput time objective, and it 
can be adjusted according to the policy of the factory and the experience of the 
decision  maker. The fi tness function  fi tness  can thus be defi ned as

 fitness  =    . [4.15]  

 The selection in the GA is the process of selecting chromosomes for the next 
generation in terms of their fi tness. Many selection schemes have been reported 
(Bäck, 1994). The tournament selection (Goldberg, 1989) is commonly utilized 
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because it is simple to implement and provides good solutions. In this research, 
this scheme is used and its procedure can be described as follows:

   •    Step 1.    Set a tournament size  k  ≥ 2.  
  •    Step 2.    Generate a random permutation of the chromosomes in the current 

population.  
  •    Step 3.  Compare the fi tness value of the fi rst  k  chromosomes listed in the 

permutation, and copy the best one into the next generation. Discard the 
strings compared.  

  •      Step 4.  If the permutation is exhausted, generate another permutation.  
  •   Step 5.     Repeat Steps 3 and 4 until no more selections are required for the next 

generation.    

 The scheme can control the population diversity and selective pressure by 
adjusting the tournament size  k . A larger value of  k  will increase the selection 
pressure while decreasing the population diversity.  

   4.4.4  Genetic operators 

 Genetic operators are used to combine existing solutions into others and to 
generate diversity. The former can be implemented by crossover, and the latter 
can be implemented by mutation. 

 In the order scheduling problem addressed, each process must be carried 
out in the corresponding type of assembly line. Thus, the genes of chromosomes 
for different types of process should be independent and the genetic 
operations can only be performed among genes with the same assembly line type. 
Therefore, for the sub- chromosomes of each assembly line type, we perform the 
corresponding genetic operators. The detailed descriptions of the two operators 
are as follows. 

  Crossover 

 The crossover operation is a random process with a probability of crossover, 
which breeds a pair of child chromosomes from a pair of parental chromosomes. 
The typical probability of the crossover operator is between 0.6 and 1.0. A large 
number of crossover operators have been proposed (Poon and Carter, 1995). 
Uniform  order crossover (Davis, 1991) is commonly utilized because it has the 
advantage of preserving the position of some genes and the relative sequence of 
the rest. It is adopted in this research and its procedure is as follows:

   •    Step 1.    Create a bit string with same length as the chromosomes.  
  •    Step 2.    Copy the genes from Parent 1 wherever the bit code is ‘1’ and fi ll them 

in the corresponding positions on Child 1. (Now we have Child 1 fi lled in 
wherever the bit code is ‘1’ and we have gaps wherever the bit code is ‘0’.)  

  •    Step 3.    Select out the genes from Parent 1 wherever the bit code is ‘0’.  

�� �� �� �� ��



 Optimizing apparel production order planning scheduling 65

©  Woodhead Publishing Limited, 2013

  •    Step 4.    Permute these genes so that they appear in the same order as they 
appear in Parent 2.  

  •    Step 5.    Fill these permuted genes in order in the gaps on Child 1.  
  •    Step 6.    To make Child 2, carry out a similar process according to Steps 2–5.    

  Figure 4.5  shows an example of the uniform  order crossover operator. 

   Mutation 

 The mutation operation is critical to the success of the GA since it diversifi es the 
search directions and avoids convergence to local optima. It is used to transform 
the chromosome by the means of randomly changing the genes. Only some 
offspring take part in the mutation operation. The size is determined by the 
probability of mutation (the typical value is between 0.0015 and 0.03). In this 
research, the inversion mutation operator (Holland, 1975) is adopted, which is 
implemented by simple inversion of the genes between two randomly selected 
genes of a chromosome.  Figure 4.6  shows an example of this mutation operator. 

     4.4.5  Termination criterion 

 The GA is controlled by a specifi ed number of generations and by using a diversity 
measure to stop the algorithm. The diversity of the GA is defi ned by the standard 
deviation of the fi tness values of all chromosomes of a population in a certain 
generation. The standard deviation should be less than a certain value, which 

   4.5     Sample of uniform  order crossover operator.     

   4.6     Sample of inversion mutation operator.     
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corresponds to the lowest allowed diversity of the population. If either of these 
two termination criteria is satisfi ed, the mechanism of the GA is terminated. For 
example, assume that the specifi ed maximal number of generations is 100 and the 
lowest allowed standard deviation value is 0.2. Once the standard deviation is less 
than 0.2, whichever generation the GA is running at, it will be terminated.   

   4.5  Experimental results and discussion 

 To evaluate the performance of the proposed algorithm for the order scheduling 
problem, a series of experiments have been conducted. The experimental data were 
collected from a make- to-order apparel manufacturing factory producing outerwear 
and sportswear. This section highlights three of these experiments in detail. Each 
example includes several cases. In each case, the order scheduling result generated 
by the proposed method is compared with that of the practical method from 
industrial practice. In industrial practice, all random variables are replaced by their 
means and the subsequent deterministic problems are usually solved by using 
precedence diagrams and trial- and-error method (Bhattacharjee and Sahu, 1987). 

 The investigated factory comprises seven shop fl oors, and each shop fl oor is 
composed of one or two assembly lines. Each shop fl oor processes different 
production processes. Each production process can only be performed in the 
assembly line(s) of the corresponding shop fl oor. In this chapter, each production 
process can only be assigned to one assembly line, and the uncertain processing 
time obeys the probability distribution presented in Section 4.2 with  τ  = 2. 
Moreover, the transportation times between different assembly lines are also 
negligible because they are much less than the processing times in assembly lines. 

   4.5.1  Experiment 1: order scheduling with uncertain 
processing time 

 In this experiment, three different cases are presented, which are described in 
detail as follows.

   •    Case 1:    fi ve production orders are scheduled in fi ve shop fl oors performing 
processes 1 to 5 respectively. The processing time of process 4 of each order 
is stochastic.  

  •      Case 2:  fi ve production orders are scheduled in seven shop fl oors performing 
processes 1 to 7 respectively. The processing time of process 5 of each order 
is stochastic.  

  •   Case 3:     seven production orders are scheduled in seven shop fl oors performing 
processes 1 to 7 respectively. The processing time of process 5 of each order 
is stochastic.    

 Processes in each case should be performed based on the specifi ed processing 
sequence; the process with lower process number should be performed earlier. 
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The relevant data for the three cases are shown in  Tables 4.1 – 4.3  respectively. In 
these tables, the fi rst column (Order no.) shows the order number, the ‘Arrival 
time’ column shows the arrival time of each order, the ‘Due time’ column shows 
the due time of each order, and other columns show the mean of processing time 
of each production process in the corresponding assembly line. For example, the 
value 4 in the second column and the row of ‘Order 1’ represents that the average 
processing time of process  R  11 , the fi rst process of order 1, is 4 units of time in 
assembly line 1 of shop fl oor 1. Moreover, in the investigated factory, shop fl oors 
1 and 5 are both composed of two assembly lines, and other shop fl oors comprise 
only one assembly line. 

 In this chapter, the order scheduling solutions for all cases of the different 
experiments are shown in  Fig. 4.7 . Based on the order scheduling solutions and 
the processing time of each process, the Gantt chart of processes being performed 
in different assembly lines can be obtained.  Figure 4.8  shows the Gantt charts for 

    Table 4.1     Data for case 1 of experiment 1  

 Order 
no. 

 Processing time of process in the corresponding 
assembly line 

 Arrival 
time 

 Due 
time 

 Shop fl oor 1  Shop 
fl oor 2 

 Shop 
fl oor 3 

 Shop fl oor 5  Shop 
fl oor 7 

 Line 1  Line 2  Line 1  Line 2 

 Order 1  4  6  2.5  2  5  5.5  2  0  17 
 Order 2  3  4.5  /  4  4  4.5  1.5  0  18.5 
 Order 3  6  7  3  /  5.5  6.5  2.5  2  27 
 Order 4  5  5.5  /  3  5  6  2  4  24 
 Order 5  5.5  7  4  /  6  6.5  2  8  31 

    Table 4.2     Data for case 2 of experiment 1  

 Order 
no. 

 Processing time of process in the corresponding 
assembly line 

 Arrival 
time 

 Due 
time 

 Shop fl oor 1  Shop 
fl oor 
2 

 Shop 
fl oor 
3 

 Shop 
fl oor 
4 

 Shop fl oor 5  Shop 
fl oor 
6 

 Shop 
fl oor 
7  Line 

1 
 Line 
2 

 Line 
1 

 Line 
2 

 Order 1  3  2.5  2.5  1.5  /  5.5  5.5  1  0.5  0  14 
 Order 2  4  3  /  4  1.5  4  4.5  1.5  1  0  20 
 Order 3  5.5  5  4.5  /  /  6  6.5  1  1.5  0  24 
 Order 4  6  5.5  /  3  2  5  6  1.5  1.5  5  28 
 Order 5  2  1.5  /  /  /  2.5  3  0.5  1  8  24 
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case 1 of experiment 1 based on the solutions generated by the proposed method 
and the practical method. For other cases in this chapter, the Gantt charts can be 
found in Appendix 2. 

 The order scheduling results of the three cases are shown in  Tables 4.4 – 4.6 . 
Consider the order scheduling results of case 1 shown in  Table 4.4 . According to 
the results of the proposed method, the mean of the completion time of each order 
is equal or very close to the desired due time and the total satisfaction level of all 
orders is 99.02%. The total satisfaction level of the practical method is 5.1% less 
than that of the proposed method because the completion time of order 4 has 

    Table 4.3     Data for case 3 of experiment 1  

 Order 
no. 

 Processing time of process in the corresponding 
assembly line 

 Arrival 
time 

 Due 
time 

 Shop fl oor 1  Shop 
fl oor 
2 

 Shop 
fl oor 
3 

 Shop 
fl oor 
4 

 Shop fl oor 5  Shop 
fl oor 
6 

 Shop 
fl oor 
7  Line 

1 
 Line 
2 

 Line 
1 

 Line 
2 

 Order 1  3.5  4  4  3.5  /  5  5  1.5  1  0  24 
 Order 2  5  4.5  /  4  1.5  4  4.5  1.5  1  0  18 
 Order 3  4  4.5  4.5  /  /  6.5  6  1  1.5  0  26 
 Order 4  5.5  5  /  2  3  5.5  6  2  1.5  7  35 
 Order 5  2  2  1.5  /  2  2.5  2  0.5  1  10  27 
 Order 6  4.5  4.5  /  /  /  2.5  2.5  1  1  16  33 
 Order 7  3  3.5  /  3  /  3  2  1  1.5  20  32 

    Table 4.4     Order scheduling results for case 1 of experiment 1  

 Order 1  Order 2  Order 3  Order 4  Order 5 

 P
ro

p
o

se
d

 
m

et
h

o
d

 

 Mean of 
completion time 

 16  18.07  26  23.5  30 

 Satisfaction 
level 

 99.00%  99.01%  99.00%  99.09%  99.00% 

 Throughput 
time 

 16  18.07  21.5  19.5  21 

 P
ra

ct
ic

al
 

m
et

h
o

d
 

 Mean of 
completion time 

 16  18  24.5  26.5  30 

 Satisfaction 
level 

 99.00%  99.09%  97.50%  75.00%  99.00% 

 Throughput 
time 

 16  18  20.5  22  20 
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   4.8     Gantt charts for case 1 of experiment 1.     

about 2.5 time units of tardiness and its satisfaction level is only 75%. Moreover, 
the total throughput times generated by the proposed method and the practical 
method are 96.05 and 96.5, respectively. Obviously, the performance of the 
proposed method is better in this case. 

 As shown in  Tables 4.5  and  4.6 , the satisfaction levels of order 1 in cases 2 and 
3 are both less than 79% in the practical method, while the satisfaction levels of 
all orders in the proposed method are greater than 97.80%. Moreover, the total 
throughput time of the proposed method outperforms that of the practical method 
in case 2. Regarding the total throughput time in case 3, the result of the proposed 
method is slightly inferior to that of the practical method. This is because the 
proposed method generates the scheduling result from the viewpoint of global 
optimization. These three cases demonstrate that the proposed method can obtain 
better optimization performance than the practical method from industrial 
practice. 
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    4.5.2  Experiment 2: order scheduling with uncertain order 

 In each case of this experiment, some existing orders and an uncertain order are 
scheduled. The data for case 1 and case 2 are similar to cases 1 and 2 of experiment 
1 respectively, except that order 5 is uncertain. In cases 1 and 2 of experiment 1, 
order 5 arrives on time 8. But, in this experiment, order 5 may come on time 8 
with probability 0.3, or it may not come at all. That is, two different production 
events may occur in each case. If order 5 comes, fi ve orders will be scheduled; 
otherwise only four orders are scheduled. 

 In the proposed method, two possibilities of each case are scheduled respectively. 
If order 5 does not come, based on the proposed method, the order scheduling 

    Table 4.5     Order scheduling results for case 2 of experiment 1  

 Order 1  Order 2  Order 3  Order 4  Order 5 

 P
ro

p
o

se
d

 
m

et
h

o
d

 

 Mean of 
completion time 

 14  20  23  28  24 

 Satisfaction level  97.80%  99.00%  99.00%  99.00%  99.00% 

 Throughput time  14  15  23  20  10.5 

 P
ra

ct
ic

al
 

m
et

h
o

d
  Mean of 

completion time 
 16.5  18.5  23.5  26  19.5 

 Satisfaction level  75%  97.50%  99.09%  97.00%  94.50% 

 Throughput time  16.5  18.5  21  21  11.5 

    Table 4.6     Order scheduling results for case 3 of experiment 1  

 Order 1  Order 2  Order 3  Order 4  Order 5  Order 6  Order 7 

 P
ro

p
o

se
d

 
m

et
h

o
d

 

 Mean of 
completion 
time 

 23.5  17  25  34.58  26.57  32.57  31.5 

 Satisfaction 
level 

 99.09%  99.00%  99.00%  99.58%  99.57%  99.57  99.09% 

 Throughput 
time 

 19  17  25  27.58  16.57  16.57  11 

 P
ra

ct
ic

al
 

m
et

h
o

d
 

 Mean of 
completion 
time 

 19.5  16.5  22.5  28.5  23.5  29.5  31.5 

 Satisfaction 
level 

 78.66%  98.50%  96.50%  93.50%  96.50%  96.50%  99.09% 

 Throughput 
time 

 19.5  16.5  19  21.5  13.5  13.5  11.5 
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results of the two cases are shown in the ‘Proposed method’ rows of  Tables 4.7 –
 4.8  respectively. In each case, the total satisfaction level is equal to the probability 
expectation of the satisfaction levels under different possibilities. Take case 1 as 
an example. If order 5 comes, the total satisfaction level of 5 orders is 99.02%. If 
it does not come, the total satisfaction level of four orders is 99.03%. Therefore, 
the total satisfaction level of case 1 is 99.02%·0.3 + 99.03%·0.7 = 99.027%. 
Similarly, we can obtain that the total satisfaction level of case 2 is 98.575%, and 
the total throughput times of cases 1 and 2 are 81.37 and 76.34, respectively. 

 In the practical method, the uncertain order, order 5, is treated as never arriving. 
The order scheduling considers only four orders and the scheduling results of the 
two cases are shown in the ‘Practical method’ rows of  Tables 4.7 – 4.8 , respectively. 
The total satisfaction levels of cases 1 and 2 are 92.65% and 91.90%, respectively. 
The total throughput times of the two cases are 82.5 and 80.1 respectively, which 
are inferior to the results from the proposed method. It follows from the discussion 
above that, in this experiment, the order scheduling results generated by the 
proposed method are also better than those generated by the practical method 
when four orders are scheduled.  

    Table 4.7     Order scheduling results for case 1 of experiment 2  

 Order 1  Order 2  Order 3  Order 4 

 P
ro

p
o

se
d

 
m

et
h

o
d

  Mean of 
completion time 

 16  18.07  26  23.5 

 Satisfaction level  99.00%  99.01%  99.00%  99.09% 

 Throughput time  16  18.07  21.5  19.5 

 P
ra

ct
ic

al
 

m
et

h
o

d
  Mean of 

completion time 
 16  18  24.5  26.5 

 Satisfaction level  99.00%  99.09%  97.50%  75.00% 

 Throughput time  16  18  20.5  22 

    Table 4.8     Order scheduling results for case 2 of experiment 2  

 Order 1  Order 2  Order 3  Order 4 

 P
ro

p
o

se
d

 
m

et
h

o
d

  Mean of 
completion time 

 14  20  21.7  28 

 Satisfaction level  97.80%  99.00%  97.70%  99.00% 

 Throughput time  14  15  21.7  23 

 P
ra

ct
ic

al
 

m
et

h
o

d
  Mean of 

completion time 
 16.5  18.5  23.5  25 

 Satisfaction level  75.00%  97.50%  99.09%  96.00% 

 Throughput time  16.5  18.5  21  20 
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   4.5.3  Experiment 3: order scheduling with uncertain 
arrival times 

 In this experiment, the arrival times of some orders are uncertain. The data for 
case 1 and case 2 are also similar to cases 1 and 2 of experiment 1, respectively, 
except that two orders have uncertain arrival times. In case 1, the arrival time for 
order 4 is random: either time 4 with probability 0.2 or time 5 with probability 0.8. 
In case 2, the arrival time for order 3 is random: either time 0 with probability 0.3 
or time 3 with probability 0.7. 

 In the proposed method, the uncertain arrival time should be considered 
according to all its possible arrival times. The above two cases both have two 
possible circumstances. For each case, the scheduling results of one possible 
circumstance have been presented in experiment 1. The scheduling results of 
other possible circumstances are shown in the ‘Proposed method’ rows in 
 Tables 4.9 – 4.10 . Taking case 1 as an example, the total satisfaction level is 99.02% 
if the arrival time of order 4 is time 4, and the total satisfaction level is 98.92% if 
its arrival time is time 5. Therefore, the expectation of the total satisfaction level 
of case 1 is 98.94%. Similarly, the total satisfaction level of case 2 can be obtained, 
which is 98.64%. 

 In the practical method, the uncertain arrival time of the order is replaced by its 
mean. That is, the arrival time of order 4 in case 1 is considered as 4.8 and the 
arrival time of order 3 in case 2 is considered as 2.1. Their scheduling results are 
shown in the ‘Practical method’ rows of  Tables 4.9 – 4.10 . The total satisfaction 
levels of the two cases are 93.92% and 95%, respectively. These results are also 
worse than those generated by the proposed method. 

 In the above experiments, the order scheduling performance generated by the 
proposed method outperforms that of the practical method because the former 
meets the production objectives better. The optimized results in this chapter are 
obtained based on the following parameter settings: the population size and the 
maximum number of generations of the proposed GA are 100 and 50, respectively; 

    Table 4.9     Order scheduling results for case 1 of experiment 3  

 Order 1  Order 2  Order 3  Order 4  Order 5 

 P
ro

p
o

se
d

 
m

et
h

o
d

  Mean of 
completion time 

 16  18.07  26  23.5  29.5 

 Satisfaction level  99.00%  99.01%  99.00%  99.09%  98.50% 

 Throughput time  16  18.07  22  15.5  19.5 

 P
ra

ct
ic

al
 

m
et

h
o

d
  Mean of 

completion time 
 16  18  24.5  26.5  30 

 Satisfaction level  99.00%  99.09%  97.50%  75.00%  99.00% 

 Throughput time  16  18  20.5  18.5  20 
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the tournament size  k   = 2; the objective weight  γ   = 1; and the proportional 
parameters  k  3  and  k  4  in Eq. 4.9 are 0.01 and 0.1, respectively.   

   4.6  Conclusions 

 This chapter has dealt with a multi- objective order scheduling problem at the 
factory level, where uncertainties are described as continuous or discrete random 
variables. The objectives were to maximize the total satisfaction level of all orders 
and minimize their total throughput time. These are particularly helpful to meet 
the due dates of orders and reduce the WIP in each shop fl oor. 

 Uncertain processing time (including beginning and completion times) has 
been derived from probability theory. The GA with a novel process order- based 
representation has been developed to explore order scheduling solutions. 
Experiments have been conducted to evaluate the effectiveness of the proposed 
algorithm. The experimental results showed that the proposed algorithm is 
substantially better than the practical method and can solve the addressed problem 
well. Our further research will investigate the uncertainties on scheduling in the 
level of job shop or assembly line, such as unpredictable machine breakdown, 
operator absenteeism, and shortage of materials.  
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   4.9       Appendix 1: nomenclature 

 The following notations are used in developing the mathematical model of order 
scheduling discussed in this chapter:

    A   i  , arrival time of order  P   i    
   B   ij  , beginning time of process  R   ij    
   C   i  , completion time of order  P   i    
   C   ij  , completion time of process  R   ij    
   D   i  , due date of order  P   i    
   ET   ij  ,  transportation time between assembly lines processing process  R   ij   and its 

following process  
   L   kl  ,  l th assembly line of shop fl oor  S   k    
   P   i  ,  i th production order (1 ≤  i  ≤  m )  
   R   ij  ,  j th production process of order  P   i    
   SAL   ij  , set of assembly lines which can perform process  R   ij    
   S   k  ,  k th shop fl oor  
   SL ,  total satisfactory level which is used to evaluate the grade of the due 

dates of all orders being met  
   SP ( R   ij′  ), set of the preceding processes of process  R   ij′    
   T   ijkl  , processing time of  R   ij   on assembly line  L   kl    
   TT , expected value of total throughput time of all orders  
   X   ijkl  ,  indicates that if process  R   ij   is assigned to assembly line  L   kl  ,  X   ijkl   is equal to 

1, otherwise it is equal to 0.     
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     4.10  Appendix 2: Gantt charts 

 The following Gantt charts show the results generated by the proposed method 
and the practical method in different cases of 3 experiments. For other cases in 
this chapter please refer to Section 4.5. 
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 Optimizing cut order planning in apparel 
production using evolutionary strategies  
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   DOI:   10.1533/9780857097842.81   

   Abstract:    Cut order planning (COP) plays a signifi cant role in managing the 
cost of materials. COP seeks to minimize the total manufacturing costs by 
developing feasible cutting order plans with respect to material, machine and 
labour. In this chapter, a genetic optimized decision- making model using 
adaptive evolutionary strategies is devised for COP. Four sets of real production 
data were collected to validate the proposed method. The experimental results 
demonstrate that the proposed method can reduce both the material costs and 
the production of additional garments while satisfying time constraints. 
Although the total operation time used is longer than that using industrial 
practice, this is outweighed by the benefi ts of reduction in fabric cost and 
extra garments.  

   Key words:    evolutionary strategies, optimization, decision support, resource 
utilization.   

    5.1  Introduction 

 In today’s apparel industry, fashion products require a signifi cant amount of 
customization due to differences in body measurements, diverse preferences for 
style and replacement cycles. It is necessary for apparel supply chains to be 
responsive to the ever- changing fashion markets by producing smaller jobs in 
order to provide customers with timely and customized fashion products. In 
apparel supply chains, fabric is the single largest material in the cost of a garment; 
approximately 50–60% of the manufacturing cost can be attributed to fabric. 
Apart from the fabric, labour and factory operation costs have also been 
continuously increasing while the selling price of apparel merchandise has been 
falling. Adopting quick response strategies to manufacture and deliver apparel 
products to the retailers while maximizing the fabric utilization rate (in other 
words, minimizing the material cost) and minimizing the labour and manufacturing 
cost becomes a great challenge to apparel manufacturers. 

   5.1.1  Cut order planning 

 Cut order planning (COP) is the fi rst stage in the production workfl ow of a typical 
apparel manufacturing company, as shown in  Fig. 5.1 . It is a planning process to 
determine how many markers are needed, how many of each size of garment 
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should be in each marker, and the number of fabric plies that will be cut from each 
marker. Marker is the output of the process of marker planning, which follows cut 
order planning.  Figure 5.2  illustrates a marker planning process using commercial 
computing to arrange all patterns of the component parts of one or more garments 
on a piece of marker paper, as shown in  Fig. 5.3 . Following marker planning, 
the third operation is fabric spreading, the process by which fabric pieces 
are superimposed to become a fabric lay on a cutting table, as shown in  Fig. 5.4 . 

   5.1     Schematic workfl ow of activities of a fabric- cutting department 
of a typical apparel manufacturing company.     
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   5.2     Example of a marker paper.     

   5.3     Marker planning process using commercial computing software.     

The last operation is fabric cutting. Garment pieces are cut out of the fabric lay 
following the pattern lines of the component parts of one or more garments on the 
marker, and then transported to the sewing department for assembly into a fi nished 
garment. 
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 COP, the most upstream activity, plays a signifi cant role in affecting the material 
cost and the manufacturing cost in the cutting department. Based on the 
requirements of customer orders in terms of style, quantity, size and colour, it 
seeks to minimize the total production cost by developing cutting orders with 
respect to material, machine and labour. In the cutting room, after the completion 
of COP and marker planning, spreading and cutting are then executed, and the 
time and costs required for these two operations will be affected by the quality of 
the cut order plans being developed. A good plan can improve the rate of fabric 
utilization. 

 The COP usually begins with a retail order comprising the quantities, sizes and 
colours of garments to be manufactured. The following example demonstrates 
how a cut order plan is derived. For simplicity, only the quantities of garments and 
sizes are considered. The details of the customer order are as follows: 
         

 Size  Small  Medium  Large 

 Quantity (in pieces)   300  600  400 

 The constraints on fabric lay dimensions are:

   •   Maximum number of plies for each lay: 75  
  •   Maximum number of garments marked on each marker: 5    

 The maximum number of garments produced per lay is 5 × 75 = 375 pieces and 
the number of garments required by the customers is 300 + 600 + 400 = 1300 
pieces. Therefore, the theoretical minimum number of lays equals 1300/375 = 
3.47. This gives a practical minimum of four lays to cut the order. If the order is 
to be cut at the lowest cost, the lays need to be as long and deep as possible. One 
of the possible solutions is: 

   5.4     Fabric lay composed of fabric plies after spreading.     
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 Small  Small  Small  Small  Small  Lay 1: 60 plies 

 Medium  Medium  Medium  Large  Large  Lay 2: 75 plies 

 Medium  Medium  Medium  Large  Large  Lay 3: 75 plies 

 Medium  Medium  Medium  Large  Large  Lay 4: 50 plies 

 An alternative to lay 1 is to have a four- garment marker and to spread 75 plies. 
This would reduce the cutting cost, but was rejected because of the fabric 
cost, since there would be 15 more plies and high fabric end loss occurring 
on both ends of each fabric ply (more plies mean greater end loss). This solution 
has demonstrated that sizes Medium and Large are in the ratio of 3:2. The marker 
for lay 2 can also be used for lays 3 and 4, thus reducing the costs of marker 
making. 

 This example shows that numerous other possible COP solutions can be 
generated. The COP problem becomes more diffi cult when the numbers of 
garments and sizes increase. The problem will be further complicated when 
the parameter of colour is also considered in the plan. In addition, labour is 
needed to operate the spreading and cutting machines. As the fabric cut pieces 
will be transported to the sewing room for garment assembly, COP needs to 
consider the fulfi lment of the demand quantity of cut- piece from the downstream 
sewing room. 

 Current industry approaches in generating the COP range from manual  ad hoc  
procedures by cut order planners to commercial software. However, many apparel 
manufacturers are still using rather primitive methods; they rely mainly on the 
expertise and subjective assessment of the planners to produce the plans. 
Therefore, the optimal COP cannot always be guaranteed. Commercial COP 
software is available for use, but the COP heuristics are usually kept confi dential 
by the proprietors. Apart from generating a COP with the right quantity of 
garments with the right size and colour, there is little room for minimizing 
material, machine and labour costs. 

 This chapter attempts to offer near- optimal COP solutions to reduce both 
materials and labour and machine costs using a genetic optimization model based 
on adaptive evolutionary strategies. The objective is to assist the production 
management of the apparel industry in the COP decision- making process and 
improve the quality of the decisions. It has been pointed out that the COP problem 
is NP-completeness in nature and it is feasible to use a heuristic approach to 
solve the problem accordingly by using constructive heuristics with intuition start 
and fi ne- tuning the solution with another improvement heuristic (Jacobs-Blecha 
 et al. , 1998).  
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   5.1.2  Evolutionary algorithms 

 Recently, evolutionary algorithm (EA)-based solution approaches have been 
proposed for solving different types of optimization problems in different 
industries. EAs mimic the behaviour of chromosomes in the evolution of living 
organisms so as to derive solutions for real- world optimization problems. Fogel 
 et al.  developed a correspondence between natural evolution and the scientifi c 
method (Fogel  et al. , 1966). In nature, individuals serve as hypotheses regarding 
the general perception of their environment. Their behaviour is an inductive 
inference regarding the unknown aspects of that environment. Validity is 
demonstrated by their survival over successive generations, during which 
individuals become successively better predictors of their surroundings. 

 In the same sense, in evolutionary algorithms, each individual can be viewed as 
a point in the search space of candidate solutions for the optimization problem. The 
fi tness of an individual is defi ned by how well that individual solves the given 
problem. Individuals with progressively higher fi tness will be obtained by evolution 
over successive generations. In other words, the adaptive change of chromosomes 
is explained by the principle of natural selection, and only those chromosomes that 
are best adapted to their environmental conditions are able to survive, i.e. the 
survival of the fi ttest. EAs thus constitute an effi cient mechanism for fi nding highly 
fi t individuals in optimization problems, and are regarded as global optimization 
tools for complex real- world problems (Yao, 1999). Such EAs are considered as a 
general concept for many real- world applications that are often beyond solution 
using traditional methods (Bäck and Schwefel, 1993; Bäck  et al. , 1997). 

 Porter reviewed the various EAs which were developed for solving industrial 
optimization problems in the 1990s (Porter, 1998a). These EAs include genetic 
algorithms, non- adaptive and adaptive evolution strategies (ESs). EAs have gained 
more and more popularity in both research and application areas as they provide 
near- optimal or optimal solutions at the end of the optimization process and thus 
facilitate the choice of the best solution. In addition to their advantages in offering 
optimal solutions, EAs have been acknowledged for their fl exibility and ease in 
hybridizing with domain- dependent heuristics in the fi eld of industrial engineering 
and many other applications (Goldberg, 1989; Powell and Skolnic, 1993; Surrey 
 et al. , 1995). In particular, there are successful applications of evolution strategies 
using chromosomes with binary strings to synthesize control policies for complex 
manufacturing systems (Porter, 1998b; Porter and Merzougui, 1997). 

 Other successful applications of EAs in marketing decision support systems for 
product line design (Alexouda, 2005), mechanical design components (Girand-
Motean and Laton, 2002), dynamic shop fl oor scheduling problems (Käschel 
 et al. , 2002), material fl ow in supply chains (Vergara, 2002), web searching (Lee 
and Tsai, 2003), competence set analysis (Huang  et al. , 2006) and a detailed 
review on the area of other manufacturing applications in relatively recent years 
can also be found in Pierreval  et al. , (2003). 

�� �� �� �� ��



 Optimizing cut order planning in apparel production 87

©  Woodhead Publishing Limited, 2013

 Non- adaptive ESs perform well only after careful choice of probability of 
crossover and probability of mutation. Adaptive ESs provide a promising 
optimization tool since they require no  a priori  selection of mutation or crossover 
probabilities. In adaptive ESs, the genetic mutation operator has a self- adapting 
mechanism introduced by Porter (Porter, 1998b). The only difference between non- 
adaptive binary ESs and adaptive binary ESs is that the probability of mutation, P m , 
is not pre- specifi ed in the adaptive case. In addition, there are two major selection 
schemes in ESs, namely ( μ  +  λ ) and ( μ , λ ), where  μ  is the population size (which is 
the same as the number of parents) and  λ  (≥  μ ) is the number of offspring generated 
from  μ  parents. In ( μ  +  λ ) ESs, the  μ  fi ttest individuals from the pool of ( μ  +  λ ) 
candidates are selected to form the next generation. In ( μ , λ ) ESs, the  μ  fi ttest 
individuals are selected from only the  λ  offspring to form the next generation. 
Experimental fi ndings indicate that the ( μ  +  λ ) strategy performs as well as or better 
than the ( μ , λ ) strategy in many practical cases (Gehlhaar and Fogel, 1996). Thus, 
the ( μ  +  λ ) strategy was used in the selection for the adaptive ESs in this chapter. In 
addition, the promising performances of adaptive ESs over non- adaptive 
evolutionary algorithms are shown in their effectiveness in solving various problems, 
such as production planning (Porter and Leung, 1998), fl ow- shop sequencing 
(Zaheh and Porter, 1998), process planning in automated manufacturing systems 
(Porter and Leung, 1998) and the design of manufacturing systems (Tong, 2002). 

 The objective of COP is to minimize costs, including the costs of fabric, labour 
and machine operation. Indeed, the more garments marked in each of the lays, the 
more effi ciently the fabric is used, though this increases the processing time involving 
the cutting machine and the labour working hours since more garment patterns need 
to be cut. Thus, a tradeoff to minimize costs exists between fabric cost and labour/
machine operation cost under a pre- defi ned time frame. Solving such a problem by 
humans with an optimal solution thus becomes unfeasible. Jacobs-Blecha  et al.  
stated that the COP problem is of an NP-complete nature (Jacobs-Blecha  et al. , 
1998). In this chapter, the use of adaptive ESs to solve the COP problem is proposed 
and a new encoding method with a shortened binary string is devised. 

 The outline of this chapter is as follows. Section 5.2 describes the model 
formulation of the COP problem. The genetic COP optimization procedures are 
described in Section 5.3. The proposed method is demonstrated by an illustrative 
example and various experiments in Section 5.4, in which the genetically 
optimized results are compared with those implemented by industrial practice. 
Finally, conclusions and recommendations for future work are outlined.   

   5.2  Formulation of the cut order planning (COP) 

decision- making model 

 In order to build the decision- making model for the COP, the following notations 
are addressed:

   G αβ  = number of garments in lay  α  with size  β   
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  P αγ  = number of plies in lay  α  with colour  γ   
  A βγ  = order quantity for size  β  with colour  γ   
  Q αβγ  = plan order quantity in lay  α  for size  β  and colour  γ   
   ℓ  max  = maximum fabric length per lay  
  L max′  = estimated maximum number of lays in the cut order plan  
  H max  = maximum allowed ply height  
  H min  = minimum required ply height if any  
  Y = fabric yield rate per dozen of garments  
   ε  = fabric end allowance per ply  
  U α  = fabric utilization per lay  
  C F  = fabric cost per metre  
  C L  = labour cost per hour  
  C E  = electricity cost per kilowatt hour  
  T C  = cutting time per garment (min)  
  T S  = spreading time per metre (min)  
  T P  = preparation time per lay (min)  
   τ  = demand time constraint from the sewing room (min)  
  W C  = cutting machine operation (Watts)  
  W S  = spreading machine operation (Watts)  
   Γ  F  = total fabric cost for the cut order plan  
   Γ  L  = total labour cost for the cut order plan  
   Γ  M  = total machine cost for the cut order plan  
   Γ  = total cost for the cut order plan  
   Φ  = fi tness of the cut order plan    

 Given a customer order consisting of certain quantities of garments with sizes  β  = 
1,2,. . .,S and colours  γ  = 1,2,. . .,C, a certain number of fabric lays  α  = 1,2,. . .,L is 
determined for spreading and cutting. In each of the lays  α  = 1,2,. . .,L being cut, the 
number of garments G αβ  for each size  β  = 1,2,. . .,S and the number of plies P αγ  for 
each colour  γ  = 1,2,. . .,C is determined. Hence, the quantity of garments allocated for 
a particular size and particular colour in a particular lay is the product of G αβ  × P αγ  and 
denoted as Q αβγ  ( α  = 1,2,. . .,L;  β  = 1,2,. . .,S;  γ  = 1,2,. . .,C). In addition, for each of 
the cut order plans, the performance is evaluated in terms of the cost functions. 

 Equation 5.1a explains that the total material cost used for a production order 
depends on the total number of garments and fabric ply spread, which is determined 
by the cut order plan, the fabric length of each garment used (calculated by the fabric 
yield dozen per dozen divided by 12), and the fabric end allowance of each of the lays.

    [5.1a]  
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 Equation 5.1b demonstrates the overall labour cost involved in a cut order plan, 
including the cost of the cutting worker who operates the cutting machine to cut 
the total number of garments in the plan, and the cost of the spreading worker who 
operates the spreading machine to spread the total fabric length determined by the 
total number of garments and plies according to the plan. As labour force is 
necessary to load the fabric to the spreading machine and remove the cut- pieces 
from the cutting machine after cutting, the amount of labour cost, which is proved 
to be proportional to the quantity of fabric lays, is considered in Eq. 5.1b.

   
.
 [5.1b]  

 In Eq. 5.1c,

    [5.1c]  

 the machine cost spent is based on the operation cost of both spreading and cutting 
machines in terms of machine working time and the specifi c operation Watt used. 
The total cost expense is

  Γ  =  Γ  F  +  Γ  L  +  Γ  M  [5.1d]  

 and hence the fi tness is

    [5.2a]  

 However, if any of the constraints 5.3, 5.4, 5.5 or 5.6 is violated, the fi tness 
will be

  Φ  = 0. [5.2b]  

 The number of garments G αβ  ( α  = 1,2,. . .,L;  β  = 1,2,. . .,S) and the number of plies 
P αγ  ( α  = 1,2,. . .,L;  γ  = 1,2,. . .,C) are subject to the following constraints:

    [5.3] 

    [5.4] 

    [5.5] 
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    [5.6]  

 where the total number of plies    for all colours in each of the lays  α  is 

constrained by the physical cutter height H max  and the desired minimum number 

of plies H min . The total length for the number of garments used    in 

each lay  α  cannot exceed the cutting table length as denoted by  ℓ  max . Moreover, in 

the case of lay  α  = L max′  that the total order quantity    has not yet completed 

the order quantity A βγ  ( β  = 1,2,. . .,S;  γ  = 1,2,. . .,C), this order plan fails and hence 
fi tness equals zero as in Eq. 5.2b as it violates the inequality 5.5. Lastly, the total 
time used in cutting, spreading and preparation that constitutes the labour time as 
illustrated in Eq. 5.1b cannot exceed the demand time instructed from the sewing 
room,  τ . 

 Thus, a genetic cut order plan is developed to fi nd out the number of garments 
G αβ  for each size  β  = 1,2,. . .,S and the number of plies P αγ  for each colour  γ  = 
1,2,. . .,C in each of the lays  α  = 1,2,. . .,L by adaptive evolution strategies so as to 
optimize the cost function in Eq. 5.1d with highest fi tness in Eq. 5.2a.  

   5.3  Genetic COP optimization 

 In this section, two possible encoding methods are elaborated and a new encoding 
method which can shorten the binary string is demonstrated. Procedures for 
generating COP with an illustrative example and a genetic COP optimization 
process will be presented. In order to minimize the cost function  Γ , a cut order 
planner needs to determine the number of lays L that the plan requires, as well as 
the number of garments G αβ  for each size  β  and the number of plies P αγ  for each 
colour  γ  in each fabric lay  α . The genetic cut order plan induction is to mimic how 
the industrial practice fi gures out the number of garments and plies in each lay for 
the plan using adaptive evolution strategies. Since the length of the binary string 
needs to be fi xed for the evolutionary process with adaptive ESs, the estimated 
maximum number of lays, L max′ , which is the approximate maximum number of 
lays to complete the order, is introduced. Once the garment quantities of various 
sizes and colours required by the order are fulfi lled in lay L (which L ≤ L max′ ), L 
would be the optimum number of lays used in completing the COP. However, in 
case of the binary string that the actual order cannot be completed until lay L max′ , 
zero fi tness will be assigned to that particular binary string as inequality 5.2b as it 
violates inequality 5.5. 
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   5.3.1  Encoding method of the binary string 

 In the genetic synthesis of the binary string representing the cut order plan, two 
possible kinds of encoding methods are considered due to search space discrepancy. 

 In encoding method 1, each binary string consists of L max′  (S + C) binary 
sub- strings. Each binary sub- string represents the number of garments in S for 
different sizes, and the number of plies in C for different colours for a particular 
fabric lay  α  ( α  = 1,2,. . .,L). As each number of garment and ply could be chosen 

from the range    and [H min , H max ] respectively, the total number of 

combinations, N com1 , is used for the number of garments and plies in the plan 
represented by the binary string as

   . [5.7]  

 In encoding method 2, the binary string is shortened with only L max′  and binary 
sub- strings that comprise

 N com2  = (H max  − H min ) 
L max′   [5.8]  

 different combinations. In this method, the great number of sizes and colours 
involved in the computing time thus will not hinder evolutionary progress 
in searching for the optimized solution. Consider the examples with 

   in the following four cases:

   Case 1: S=1, C=1, L max′  =1  

  Case 2: S=2, C=1, L max′ =1  

  Case 3: S=2, C=2, L max′ =1  

  Case 4: S=2, C=2, L max′ =2;    

 the total number of combinations for encoding method 1, N com1 , and encoding 
method 2, N com2 , as well as the number of binary sub- strings, can be compared, as 
shown in  Table 5.1 . 

  Table 5.1  clearly shows the rapid increase of N com1  with S, C and L, particularly 
when the number of lays, L, increases. Nevertheless, the computing time in 
searching for the optimized solution within such a huge search space with N com1  is 
crucial in the evolutionary progress. In order to evolutionarily generate the 
optimized solution with effi cient running time, encoding method 2 is used in this 
chapter with the encoding details described on the next page. 
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 The shortened binary string is presented, in which only the specifi c ply number 
P αγ  ′  of specifi c colour  γ ′ is encoded as the binary sub- string for lay  α  in the binary 
string, as shown in  Fig. 5.5 . Indeed, P 1  γ  ′  is selected from the minimum actual 

order quantity    for the 1st lay and P αγ  ′  ( α  = 2,3, . . ., L max′ ) is selected 

from the minimum remaining order quantity    for the Lth lay 

(   instead when    for each size  β ). The range of P αγ  ′  is 

bounded by the physical constraints of the ply height as shown in inequality 5.3, 

and the remaining P αγ  is bounded by [max(1,H min ),min  ] when  α  = 1 

and [max(1,H min ),min(  )] when  α  > 1. Hence, the adaptive 

evolution strategy is used to fi nd the P αγ  ′  within the above range for each lay so as 
to optimize the cost function as shown in Eq. 5.1d. 

    5.3.2  Procedures for generating COP 

 Then the specifi c ply number P αγ  ′  is used to generate the garment numbers G αβ  for 
sizes  β  = 1,2, . . ., S as well as the remaining ply numbers P αγ  for the rest of the 
colours  γ  = 1,2, . . ., C except  γ ′ in each lay. In general, G αβ  is determined by the 

    Table 5.1     Comparison of the total number of combinations in two different 
encoding methods  

 Case 1  Case 2  Case 3  Case 4 

 Encoding method 1: binary sub- strings  2  3  4  8 
 N com1   100  1000  10 000  100 000 000 
 Encoding method 2: binary sub- strings  1  1  1  2 
 N com2   10  10  10  100 

   5.5     Confi guration of binary strings for the cut order planning.     
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quotient  Θ  αβγ  ′ , as shown in Eq. 5.9 that    dividing P αγ  ′  with the 
consideration of the remainder ℜ,

   , [5.9]  

 where    when  α  = 1 and    when   . Similarly, 

the remaining ply number P αγ  is determined by the minimum quotient min
{ Θ ′ αβγ } for  β  = 1,2, . . ., S in each particular lay  α  and colour  γ  derived from 

Eq. 5.10 when   , dividing G αβ  for G αβ  > 0 with the consideration of the 

remainder ℜʹ,

   , [5.10]  

 where    when  α  = 1 and    when   . The 

details of determining the garment number G αβ  by the specifi c ply number P αγ  ′ , 
and hence the remaining ply number P αγ , are illustrated by the following 
example with S = 3, C = 4,  γ ′ = 4 for both  α  = 1 and  α  = 2, as shown in  Tables 5.2  
and  5.3 , respectively. 

 In this case, for  α  = 1, if P 1  γ  ′  = P 14   = 7, the number of garments is derived by 
Eq. 5.9 such that

     .

 Since    and A 14 = 1, A 14  dividing P 14  gives the quotient  Θ  114  = 0 with 

remainder ℜ = 1, G 11 = 0. Then, G 12 = 2 and G 13 = 1 could be drawn similarly to G 11 , 

    Table 5.2     Lay 1 cut order plan for the example with S = 3, C = 4,  γ  ́ = 4  

 No. of garments  G 11 =0  G 12 =2  G 13 =1 
    

 No. of ply 

 Col              Size  1  2  3 

 1  5  33   4  42  P 11 =4 
 2  2  40  29  71  P 12 =20 
 3  0  31  22  53  P 13 =16 
 4  1  13   6  19  P 14 =7 
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which is shown in previous lines. According to Eq. 5.10, the number of plies P 1  γ  
is determined by the minimum quotient min{ Θ ′ 1  βγ } across the size  β  = 1,2, . . ., S 
in lay 1 for each particular colour  γ . The orders A βγ  divide the number of garments 
G 1  β  for G 1  β  ≠ 0 such that

     .

 In drawing the number of plies P 11 , the quotient  Θ ′ 111  is not included in the set 
min{ Θ ′ 1  β  1 } as G 11  = 0 and is neglected. Thus P 11  is determined by the quotient found 
by either G 12  or G 13 . As the quotient of A 21 = 33 dividing G 12  = 2 gives  Θ ′ 121  = 17 with 
remainder R′ = 1 while A 31  = 4 dividing G 13  = 1 gives  Θ ′ 131  = 4 with remainder 
R′ = 0, P 11  is equal to the minimum quotient min{ Θ ′ 1  β  1 } = 4 as remainder R′ = 0. In 
the same sense, P 12  = 20 and P 13  = 16 can be drawn accordingly. 

 For  α  = 2 related to the above example, if P 2  γ  ′  = P 24  = 1, the number of garments 
G 2  β  is determined by

     

 Then, G 21  = 1 as 1 divided by 1 gives the quotient  Θ  214 = 1 with ℜ = 0, G 22  = 0 since 
A 24  − Q 124  = 0 as Q 124  = 7 × 2 = 14 > A 24  = 13, and similarly G 23  = 0. Next, the 
number of plies P 2  γ  is determined by the minimum quotient min{ Θ ′ 2  βγ } among the 
size  β   = 1,2,3 with actual orders A βγ  divided by the number of garments G 2  β  for 
G 2  β  ≠ 0 such that

     

    Table 5.3     Lay 2 cut order plan for the example with S = 3, C = 4,  γ  ́ = 4  

 No. of garments  G 21 =1  G 22 =0  G 23 =0 

    

 No. of plies 

 Col              Size  1  2  3 

 1  5  25  0  30  P 21 =5 
 2  2  0  9  11  P 22 =2 
 3  0  0  6  6  P 23 =0 
 4  1  0  0  1  P 24 =1 
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 Drawing the number of plies P 21 , G 22  and G 23  are neglected as they are equal to 
zero and thus P 21  is determined by the quotient found by G 21 . Hence, P 21 = 5 and 
similarly P 22  = 2 and P 23  = 0. 

 The general outline of the proposed approach is presented below:

   •    Step 1:  Initialize parameter with population size with  μ  parents and  λ  
offspring.  

  •    Step 2:  Randomly produce the binary string that represents P αγ  ′  for  α  = 1,2, 
. . ., L max′  and assign a value of the probability of mutation, P m , to each of the 
chromosomes in the population.  

  •    Step 3:  Decode the binary string and generate the according COP as illustrated 
in the previous section.  

  •    Step 4:  Evaluate the fi tness,  Φ , for each COP with Eq. 5.1 and 5.2 deduced 
from parent chromosomes.  

  •    Step 5:  Perform the mutation to give birth to  λ  offspring chromosomes.  
  •    Step 6:  Repeat Steps 3 and 4 for offspring chromosomes and assign new 

probability of mutation to the offspring such that if offspring fi tness,  Φ ′, is 
larger or equal to parent fi tness,  Φ , then the probability of mutation assigned 
to offspring, P′ m , is equal to parent’s probability of mutation, P m . Otherwise, if 
 Φ ′ <  Φ , then P′ m  is assigned randomly.  

  •    Step 7:  Rank the pool of parents and offspring with the size ( μ  +  λ ) in terms 
of chromosome fi tness and select the best  μ  chromosomes to be the next 
generation parents.  

  •    Step 8:  Repeat Steps 5, 6 and 7 until the target generation number is reached.      

   5.4  An example of a genetic optimization model 

for COP 

 The proposed genetic optimization model can be illustrated by considering a 
particular order with six sizes and nine colours with the order quantity A βγ  ( β  = 
1,2, . . ., 6;  γ  = 1,2, . . ., 9) as shown in  Table 5.4 . Validation was conducted to 
compare the results found by the industrial practice using commercial software 
and those by the proposed decision- making model using adaptive ESs with a 
population size of 100 runs for 100 generations and a population size of 1000 runs 
for 1000 generations respectively. The parameters adopted for the evolutionary 
algorithm after testing are:  μ  = 50,  λ  = 100, and mutation rate = 0.003. 

 In this case, S = 6, C = 9, Y = 2.69m,  ε  = 0.06m, ℓ max  = 10m, H min  = 0, H max  = 60 and 
L max′  = 20 for inequalities 5.3 to 5.4. Thus, the number of combinations for this 
particular example as defi ned in Eq. 5.8 is N com2  = (60 − 1) 20  = 2.61 × 10 35 . According 
to constraint 5.4, the maximum number of garments per lay in this case is 45. The 
demand time constraint from the sewing room is  τ   = 100mins. The cost, time, and 
power- related parameters are defaulted as C F  = $30/m, C L  = $4.17/h, C E  = $0.27/
kWh, T C  = 0.173 min/garment, T S  = 0.0324 min/m, T P  = 4 mins/lay, W C  = 3000 Watt, 
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and W S  = 2000 Watt. Lastly, the fabric utilization, U α , for each fabric lay can be 
determined based on  Fig. 5.6 , which demonstrates that in industrial practice the 
utilization rate will be improved when more garment patterns can be marked/
drawn on the marker. Indeed, the fabric utilization in each lay depends on the 

total number of garments,   ́, used in that particular lay (in this chapter, 

the equations for the utilization are calculated as: 

(1) if   , then   
; 

(2) if   , then
    

.

    Table 5.4     Order quantity for the illustrated example  

 Size 1  Size 2  Size 3  Size 4  Size 5  Size 6 

 Col 1  0  28  57  59  39  13 
 Col 2  1  47  109  103  74  34 
 Col 3  0  17  27  22  12  5 
 Col 4  1  74  152  163  116  22 
 Col 5  0  48  86  96  77  22 
 Col 6  0  10  15  16  4  1 
 Col 7  1  48  87  99  62  13 
 Col 8  0  76  150  161  125  46 
 Col 9  0  81  212  240  190  101 

   5.6     Fabric utilization rate versus the number of garments used per lay.     
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 The evolutionary trajectories in this case for the best- of-generation and generation- 
average values of the fi tness with the population size of 100 over 100 generations 
and population size of 1000 over 1000 generations are shown in  Fig. 5.7  
and  5.8  respectively. The fi tness associated with the best cut order plan has the 
values of  Φ  = 0.4549 under the 100  + 100 adaptive evolution strategy and 
 Φ  = 0.4563 under the 1000 + 1000 adaptive evolution strategy. The fi tness value of 
the best cut order plan decided by the industrial practice achieves  Φ  = 0.4444. The 
details of the cut order plans with the number of garments and plies in each of the 
lays decided by the industrial practice and evolutionarily synthesized are listed in 
the Appendix.  Table 5.5  lists the detailed results between industrial practice and 

   5.7     Best- of-generation and generation- average values of the fi tness, 
over 100 generations.     

   5.8     Best- of-generation and generation- average values of the fi tness, 
over 1000 generations.     
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proposed COP decision- making model using AESs in terms of cost function, 
average fabric utilization, average lay length and the total time used to complete 
the plan. 

 The extra quantity of garments generated from the evolutionarily synthesized 
plans was 50 and 33 with the population size of 100 over 100 generations and 
population size of 1000 over 1000 generations respectively, much lower than the 
72 extra garments generated by the industrial practice. Although the total time 
used to execute the plan by spreading and cutting was 97.45 min (100 + 100) and 
98.59 min (1000 + 1000) when using adaptive ESs, which was longer than 
93.75 min based on the industrial practice, the extra time used is within 5 min and 
acceptable under the demand time constraint from the sewing room (i.e. 100 min). 

 In addition to the illustrative example with S = 6, C = 9 as shown above, three 
other typical industrial cases with different sizes and colours were considered and 
compared in a similar way in terms of fi tness, total lay length, extra quantity, and 
the total time used to complete the plan. The genetic optimized COPs are listed 
in  Table 5.6 . As illustrated in case 1, the fi tness generated by adaptive ESs is 
0.8077, which is better than the fi tness of 0.7965 generated by the industrial 
practice. In addition, the number of extra garments (which may not be accepted by 
the customers) dramatically drops from 23 pieces to 3 pieces after using 
adaptive ESs. Moreover, the total length of fabric lay used shortens from 
418.45 m to 412.64 m. Indeed, it can be shown that for all remaining cases, 2 to 4, 
the COPs found by adaptive ESs are able to achieve higher fi tness values with a 
smaller extra quantity of garments and shorter total length of fabric lays, as in 
case 1; thus the fabric cost can be reduced. On the other hand, the average number 
of garments per fabric lay based on industrial practice is smaller than that 
generated by adaptive ESs, except in case 1. In case 1, the average number 
of garments per lay based on industrial practice is 22, compared with 22 and 
21.5 based on adaptive ESs. The average number of fabric plies per lay based on 
industrial practice is in general larger than that obtained using adaptive ESs for all 
cases shown. Although the total operation (spreading and cutting) time used based 
on adaptive ESs is longer than that using industrial practice (except case 1 – ESs: 
28.81 min, industrial practice: 29.17 min) in most cases, the longer operation time 
can be compensated by the great benefi ts obtained by reduced fabric cost and 
extra quantity of garments planned and produced. In fact, the extra operation 
time is acceptable as long as it does not exceed the time constraint requested by 
the sewing room. 

 The results described in this section were obtained by 100 + 100 or 1000 + 1000 
adaptive evolution strategies, with each solution completed in less than 1 min and 
4 min respectively. Nevertheless, humans need at least 15 min to fi gure out the 
plan depending on the order complexity with the number of sizes and colours 
incorporated. Thus, the evolutionarily synthesized plan introduced in this chapter 
is more effective in terms of time and cost in general when compared with the use 
of industrial practice in fi guring out the plan by trial and error.  
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   5.5  Conclusions 

 In the apparel industry, production orders tend to split into smaller orders with 
different product features in response to the growing requests for product 
customization, which greatly complicates the COP process. In the apparel 
manufacturing process, the effectiveness of COP extensively infl uences the 
overall material, machine and labour costs and thus, in turn, is critical to the 
overall system performance. In this chapter, a genetic optimization approach 
using adaptive ESs is developed to genetically synthesize the cut order plan in 
order to complete the order with minimized costs and the consideration of time 
constraint pre- determined by the downstream assembly departments. The 
production of extra quantities of garments caused by the COP can also be 
minimized. It can be shown in the illustrative examples that, since labour and 
electricity costs are not as signifi cant as the fabric cost, the evolutionarily 
generated plan emphasizes minimizing the fabric cost under the time constraint 
set by the downstream sewing room. Even if the labour and electricity costs 
become signifi cant, the evolutionarily generated plan will automatically be 
adjusted to accommodate such changes so as to minimize the costs. The 
evolutionary process of the proposed COP decision- making model can be 
improved further. Future research will focus on the combination of ESs and other 
heuristic search techniques, such as particle swarm optimization, ant colony 
optimization, etc., to improve the convergence speed and global optimization 
ability.  
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  Lay #    Cut order plan  

  1  # of garment: size 1 − 0, size 2 − 4, size 3 − 6, size 4 − 6, size 5 − 2, size 6 − 1 
 # of ply: col 1 − 4, col 2 − 6, col 3 − 2, col 4 − 10, col 5 − 6, col 6 − 2, col 7 − 
5, col 8 − 10, col 9 − 10 

  2  # of garment: size 1 − 0, size 2 − 4, size 3 − 6, size 4 − 6, size 5 − 2, size 6 − 1 
 # of ply: col 1 − 4, col 2 − 6, col 3 − 2, col 4 − 9, col 5 − 7, col 6 − 1, col 7 − 5, 
col 8 − 10, col 9 − 11 

  3  # of garment: size 1 − 0, size 2 − 0, size 3 − 2, size 4 − 2, size 5 − 4, size 6 − 1 
 # of ply: col 1 − 3, col 2 − 7, col 3 − 0, col 4 − 2, col 5 − 2, col 6 − 0, col 7 − 2, 
col 8 − 8, col 9 − 15 

  4  # of garment: size 1 − 0, size 2 − 0, size 3 − 2, size 4 − 2, size 5 − 4, size 6 − 1 
 # of ply: col 1 − 3, col 2 − 6, col 3 − 0, col 4 − 2, col 5 − 3, col 6 − 0, col 7 − 2, 
col 8 − 8, col 9 − 15 

  5  # of garment: size 1 − 0, size 2 − 1, size 3 − 2, size 4 − 0, size 5 − 3, size 6 − 1 
 # of ply: col 1 − 0, col 2 − 0, col 3 − 2, col 4 − 0, col 5 − 0, col 6 − 0, col 7 − 0, 
col 8 − 0, col 9 − 0 

  6  # of garment: size 1 − 1, size 2 − 0, size 3 − 4, size 4 − 2, size 5 − 0, size 6 − 4 
 # of ply: col 1 − 0, col 2 − 2, col 3 − 0, col 4 − 0, col 5 − 0, col 6 − 0, col 7 − 0, 
col 8 − 0, col 9 − 0 

  7  # of garment: size 1 − 0, size 2 − 0, size 3 − 3, size 4 − 4, size 5 − 5, size 6 − 0 
 # of ply: col 1 − 0, col 2 − 0, col 3 − 0, col 4 − 11, col 5 − 0, col 6 − 0, col 7 
− 5, col 8 − 0, col 9 − 6 

  8  # of garment: size 1 − 0, size 2 − 0, size 3 − 0, size 4 − 1, size 5 − 2, size 6 − 1 
 # of ply: col 1 − 0, col 2 − 0, col 3 − 0, col 4 − 0, col 5 − 0, col 6 − 0, col 7 − 0, 
col 8 − 11, col 9 − 0 

  9  # of garment: size 1 − 1, size 2 − 0, size 3 − 0, size 4 − 0, size 5 − 3, size 6 − 0 
 # of ply: col 1 − 0, col 2 − 0, col 3 − 0, col 4 − 3, col 5 − 0, col 6 − 0, col 7 − 0, 
col 8 − 0, col 9 − 0 

 10  # of garment: size 1 − 1, size 2 − 3, size 3 − 2, size 4 − 4, size 5 − 1, size 6 − 0 
 # of ply: col 1 − 0, col 2 − 0, col 3 − 0, col 4 − 0, col 5 − 0, col 6 − 0, col 7 − 3, 
col 8 − 0, col 9 − 0 

 11  # of garment: size 1 − 0, size 2 − 0, size 3 − 1, size 4 − 3, size 5 − 0, size 6 − 5 
 # of ply: col 1 − 0, col 2 − 0, col 3 − 0, col 4 − 0, col 5 − 0, col 6 − 0, col 7 − 0, 
col 8 − 0, col 9 − 11 

 12  # of garment: size 1 − 0, size 2 − 0, size 3 − 0, size 4 − 2, size 5 − 7, size 6 − 1 
 # of ply: col 1 − 0, col 2 − 0, col 3 − 0, col 4 − 0, col 5 − 5, col 6 − 0, col 7 − 0, 
col 8 − 0, col 9 − 0 

   5.8  Appendix: comparison between industrial 

practice and proposed COP decision-making 

model 

   Table A1.1   COP generated by industrial practice using commercial COP software 
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  Lay #    Cut order plan  

 1  # of garment: size 1 − 0, size 2 − 5, size 3 − 8, size 4 − 8, size 5 − 2, size 6 − 1 
 # of ply: col 1 − 6, col 2 − 10, col 3 − 2, col 4 − 15, col 5 − 10, col 6 − 2, col 7 
− 10, col 8 − 5, col 9 − 0 

 2  # of garment: size 1 − 0, size 2 − 7, size 3 − 11, size 4 − 6, size 5 − 8, size 6 − 3 
 # of ply: col 1 − 0, col 2 − 0, col 3 − 1, col 4 − 0, col 5 − 0, col 6 − 0, col 7 − 0, 
col 8 − 8, col 9 − 12 

 3  # of garment: size 1 − 0, size 2 − 0, size 3 − 5, size 4 − 6, size 5 − 14, size 6 − 4 
 # of ply: col 1 − 2, col 2 − 3, col 3 − 0, col 4 − 2, col 5 − 2, col 6 − 0, col 7 − 1, 
col 8 − 3, col 9 − 6 

 4  # of garment: size 1 − 0, size 2 − 0, size 3 − 0, size 4 − 2, size 5 − 15, size 6 − 2 
 # of ply: col 1 − 0, col 2 − 0, col 3 − 0, col 4 − 0, col 5 − 2, col 6 − 0, col 7 − 0, 
col 8 − 0, col 9 − 0 

 5  # of garment: size 1 − 1, size 2 − 0, size 3 − 14, size 4 − 5, size 5 − 12, size 6 − 12 
 # of ply: col 1 − 0, col 2 − 1, col 3 − 0, col 4 − 0, col 5 − 0, col 6 − 0, col 7 − 0, 
col 8 − 0, col 9 − 0 

 6  # of garment: size 1 − 1, size 2 − 0, size 3 − 1, size 4 − 5, size 5 − 10, size 6 − 0 
 # of ply: col 1 − 0, col 2 − 0, col 3 − 0, col 4 − 1, col 5 − 0, col 6 − 0, col 7 − 3, 
col 8 − 0, col 9 − 0 

 7  # of garment: size 1 − 0, size 2 − 0, size 3 − 2, size 4 − 11, size 5 − 2, size 6 − 1 
 # of ply: col 1 − 0, col 2 − 0, col 3 − 0, col 4 − 0, col 5 − 0, col 6 − 0, col 7 − 0, 
col 8 − 5, col 9 − 5 

 8  # of garment: size 1 − 0, size 2 − 0, size 3 − 3, size 4 − 4, size 5 − 7, size 6 − 0 
 # of ply: col 1 − 0, col 2 − 0, col 3 − 0, col 4 − 7, col 5 − 0, col 6 − 0, col 7 − 0, 
col 8 − 0, col 9 − 0 

 9  # of garment: size 1 − 0, size 2 − 0, size 3 − 5, size 4 − 10, size 5 − 0, size 6 − 5 
 # of ply: col 1 − 0, col 2 − 0, col 3 − 0, col 4 − 0, col 5 − 0, col 6 − 0, col 7 − 0, 
col 8 − 0, col 9 − 8 

    Table A1.2   COP with best fi tness generated by proposed COP decision- making 
model using (100+100) Adaptive ESs 
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    Table A1.3   COP with best fi tness generated by proposed COP decision- making 
model using (1000+1000) Adaptive ESs                           

  Lay #    Cut order plan  

 1  # of garment: size 1 − 0, size 2 − 5, size 3 − 8, size 4 − 8, size 5 − 2, 
size 6 − 1 
 # of ply: col 1 − 6, col 2 − 10, col 3 − 2, col 4 − 15, col 5 − 10, col 6 − 2, 
col 7 − 10, col 8 − 5, col 9 − 0 

 2  # of garment: size 1 − 0, size 2 − 7, size 3 − 11, size 4 − 6, size 5 − 8, size 6 − 3 
 # of ply: col 1 − 0, col 2 − 0, col 3 − 1, col 4 − 0, col 5 − 0, col 6 − 0, col 7 − 0, 
col 8 − 8, col 9 − 12 

 3  # of garment: size 1 − 0, size 2 − 0, size 3 − 5, size 4 − 6, size 5 − 14, 
size 6 − 4 
 # of ply: col 1 − 2, col 2 − 3, col 3 − 0, col 4 − 2, col 5 − 2, col 6 − 0, col 7 − 1, 
col 8 − 3, col 9 − 6 

 4  # of garment: size 1 − 0, size 2 − 0, size 3 − 0, size 4 − 2, size 5 − 15, 
size 6 − 2 
 # of ply: col 1 − 0, col 2 − 0, col 3 − 0, col 4 − 0, col 5 − 2, col 6 − 0, col 7 − 0, 
col 8 − 0, col 9 − 0 

 5  # of garment: size 1 − 1, size 2 − 0, size 3 − 7, size 4 − 3, size 5 − 6, 
size 6 − 6 
 # of ply: col 1 − 0, col 2 − 2, col 3 − 0, col 4 − 0, col 5 − 0, col 6 − 0, col 7 − 0, 
col 8 − 0, col 9 − 0 

 6  # of garment: size 1 − 1, size 2 − 0, size 3 − 1, size 4 − 7, size 5 − 14, 
size 6 − 0 
 # of ply: col 1 − 0, col 2 − 0, col 3 − 0, col 4 − 1, col 5 − 0, col 6 − 0, col 7 − 2, 
col 8 − 0, col 9 − 0 

 7  # of garment: size 1 − 0, size 2 − 0, size 3 − 2, size 4 − 11, size 5 − 2, 
size 6 − 1 
 # of ply: col 1 − 0, col 2 − 0, col 3 − 0, col 4 − 0, col 5 − 0, col 6 − 0, col 7 − 0, 
col 8 − 5, col 9 − 5 

 8  # of garment: size 1 − 0, size 2 − 0, size 3 − 7, size 4 − 8, size 5 − 15, 
size 6 − 0 
 # of ply: col 1 − 0, col 2 − 0, col 3 − 0, col 4 − 3, col 5 − 0, col 6 − 0, col 7 − 0, 
col 8 − 0, col 9 − 0 

 9  # of garment: size 1 − 0, size 2 − 0, size 3 − 7, size 4 − 13, size 5 − 0, 
size 6 − 6 
 # of ply: col 1 − 0, col 2 − 0, col 3 − 0, col 4 − 0, col 5 − 0, col 6 − 0, col 7 − 0, 
col 8 − 0, col 9 − 6 
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production using evolutionary strategies 
and neural networks  
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University, China and      Z.  X.    GUO,    Sichuan University, China   

   DOI:    10.1533/9780857097842.106  

   Abstract:    Marker planning in apparel production is a kind of packing 
problem in the research fi eld of engineering. The irregular shapes of 
pattern pieces of a garment make the marker planning problem more 
complex. Few approaches have been developed to solve these problems, 
although effectiveness of packing determines industrial resource 
utilization. This study constructs a packing approach that integrates a grid 
approximation- based representation, a learning vector quantization 
neural network, a heuristic placement strategy and an integer 
representation- based ( μ  +  λ ) – evolutionary strategy to obtain effi cient 
placement of irregular objects. Real data are used to demonstrate the 
performance of the proposed methodology. The results are compared with 
those obtained by a genetic algorithm- based packing approach and those 
generated from industrial practice, demonstrating the effectiveness of the 
proposed approach.  

   Key words:    irregular object packing, evolutionary strategies, neural network.   

    6.1  Introduction 

 Packing problems are combinatorial optimization problems that concern the 
allocation of multiple objects (patterns) in a large containment region without 
overlap, and the objective of the allocation process is to maximize the occupied 
space and minimize the ‘wasted’ space. In the literature, there are many approaches 
to tackling different packing problems, such as those based on the concept of 
‘no- fi t polygons’ (NFP) (Bennell  et al. , 2001, Gomes and Oliveira, 2002; Li and 
Milenkovic, 1995; Oliveira  et al. , 2000; Stoyan  et al. , 1996), methods of bottom- 
left (BL) placement strategy (Dowsland and Dowsland, 1995; Oliveira  et al. , 
2000) and those based on linear programming compaction methods (Bennell and 
Dowsland, 2001; Gomes and Oliveira, 2006; Li and Milenkovic, 1995; Stoyan 
 et al.  1996). In recent years, following the concept of phi- function proposed in 
Stoyan and Gil, (1976), Stoyan  et al.  constructed mathematical models of two- or 
three- dimensional packing problems as problems of mathematical programming 
to seek their local and global optimization solutions (Stoyan  et al. , 2002; 
Scheithauer  et al. , 2005; Bennell  et al. , 2010; Stoyan and Chugay, 2009). It was 
reported that the phi- function based techniques showed superior performance to 
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NFP-based techniques. In a landmark paper, Burke  et al.  (2006) presented a new 
bottom- left-fi ll heuristic algorithm, which integrated a geometrical defi nition, a 
new technique of primitive overlap resolution, with hill climbing and tabu local 
search methods, for the two- dimensional (2D) irregular stock- cutting problem. 
Their experimental results on a wide range of benchmark problems showed that 
the new bottom- left-fi ll heuristic algorithm outperformed the other techniques of 
the previous studies. 

 It is well-known that packing problems are combinatorial optimization 
problems with a very large search space. In order to search for their global optimal 
solutions, mathematical programming techniques as a rule search for a huge 
number of local extrema and it takes a lot of computational time. Various meta- 
heuristic algorithms have been adopted as optimization tools to fi nd good solutions 
fast. However, this very often leads to sacrifi ce of high- performance results. These 
meta- heuristic approaches include simulated annealing (Burke and Kendall, 1999; 
Gomes and Oliveira, 1999; Gomes and Oliveira, 2006; Heckmann and Lengauer, 
1995; Oliveira and Ferreira, 1993; Wu  et al. , 2003), tabu search (Bennell and 
Dowsland, 1999; Bennell and Dowsland, 2001; Blazewicz  et al. , 1993), neural 
networks (Au  et al. , 2006; Han and Na, 1996; Wong, 2003; Wong  et al. , 2006; 
Wong  et al. , 2009; Yuen  et al. , 2009) and genetic algorithms (GA) (Babu and 
Babu, 2001; Bounsaythip and Maouche, 1997; Bounsaythip  et al. , 1995; Fujita 
 et al. , 1993; Guo  et al. , 2008, 2008a; Hifi  and Hallah, 2003; Hopper, 2000; Ismail 
and Hon, 1992; Jain and Gea, 1998; Jakobs, 1996; Song  et al. , 2006; Wong, 
2003a; Wong  et al. , 2000; Yuen  et al. , 2009a). Among these approaches, genetic 
algorithms are the most popular technique to solve irregular object packing 
problems (Hifi  and Hallah, 2003). 

 Applications of genetic algorithms to irregular object packing problems based 
on geometric representation have been extensively studied. For packing 
approaches based on geometric representation, irregular objects are represented 
by polygons that are composed of a list of vertices. For instance, Fujita  et al.  
(1993) developed an order- based genetic algorithm in combination with local 
minimization to solve convex polygon packing problems. Jakobs (1996) also used 
an order- based genetic algorithm to solve polygon packing problems. Bounsaythip 
and Maouche (1997) provided a binary tree approach for packing problems in the 
textile industry. When the above approaches were adopted, polygons were 
circumscribed by their bounding rectangles. In the packing process, low- level 
routines were adopted to fi nd the smallest enclosing rectangle of the cluster using 
a special encoding technique (Bounsaythip  et al.  1995), which describes the 
contour of a polygon relative to the enclosing rectangle by a set of integer values. 
Hopper (2000) proposed a genetic algorithm in combination with a bottom- left 
algorithm to solve both orthogonal and irregular nesting problems. Hifi  and Hallah 
(2003) developed an approach which consists of a constructive heuristic and a 
hybrid genetic algorithm- based heuristic to two- dimensional layout problems for 
cases of regular and irregular shapes. 
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 As reviewed in the previous paragraph, there are numerous approaches based 
on computational geometric description giving good performance. Nevertheless, 
it is hard to implement them due to their computational complexity for large and 
complex data sets. In order to overcome the drawback, a digitized representation 
approach called grid approximation (Ismail and Hon, 1992) was adopted and 
objects were represented by two- dimensional matrices. There are two advantages 
over the geometric representation: the fi rst advantage is that there is no need to 
introduce additional routines to identify enclosed areas in objects, and the second 
one is that it is easier to detect overlap. 

 Although grid approximation has advantages, irregular object packing based on 
grid approximation is a complex task. As a result, very few attempts to develop 
effi cient packing methods based on grid approximation for irregular objects have 
been reported in the literature. In Ismail and Hon’s study (1992), rectilinear shapes 
were digitized and represented as a two- dimensional grid array. A multi- parameter 
binary string including relative positions of a shape was used to indicate shape 
sequences. The traditional single- point crossover operator and the basic gene- 
alter mutation operator (Goldberg, 1989) were adopted to generate new offspring. 
However, applying such genetic operators to the data structure may cause 
infeasible solutions (i.e. overlap). In view of the defi ciencies of Ismail and Hon’s 
method (1992), Jain and Gea (1998) designed a new concept of a 2D genetic 
algorithm chromosome as a two- dimensional matrix to describe the complete 
layout. Crossover and mutation operators were modifi ed to suit this 2D genetic 
algorithm chromosome, while a new genetic operator called compaction was 
developed to increase the density of the layout. Nevertheless, this special encoding 
approach results in a very long parent chromosome and leads to a very extensive 
computation when it is applied to packing a large number of objects. Hence, it is 
impractical to implement Jain and Gea’s algorithm (1998) for large- scale 
problems. 

 Although evolutionary strategy, like GAs, is also a powerful evolutionary 
algorithm that has been used successfully in solving various engineering problems 
(Quagliarella  et al. , 1995) and usually shows faster convergence speed than 
GAs do (Bäck and Hoffmeister, 1991), it has not been investigated and used to 
solve packing and nesting problems in the current literature. It is desirable to 
investigate the performance of evolutionary strategy based on grid approximation 
for irregular packing problems. In this study, a new hybrid approach was 
developed which combines a ( μ  +  λ ) – evolutionary strategy, a learning vector 
quantization neural network, a grid approximation representation and a heuristic 
two- stage placement strategy, to increase the usability of the stock sheet. A ( μ  + 
 λ ) – evolutionary strategy is used to determine the packing information (i.e. the 
packing sequence of packing cells, objects’ orientation, and packing rules 
selection), in which an integer representation is adopted to obtain higher 
computational effi ciency than the 2D genetic chromosome in Jain and Gea’s study 
(1998). A learning vector quantization neural network was also developed by a 
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set of examples inspired by experienced packing planners to diminish the size of 
a search space by dividing the objects into three classes. A grid approximation 
representation technique was also employed to represent any shaped objects, 
including convex and concave. In contrast to the geometric algorithms reported in 
previous research studies, grid approximation simplifi es the calculation process, 
and thus it is easier to judge whether objects overlap. A two- stage placement 
strategy was proposed to ameliorate the shortcomings of packing approaches 
based on enclosing rectangles. 

 The remainder of the chapter is organized as follows. A brief description of 
irregular object packing problems is given and a new heuristic placement method 
is presented in detail in Section 6.2. A ( μ  +  λ ) – evolutionary strategy is used to 
determine the packing sequence of packing cells in Section 6.3. The effectiveness 
of the proposed methodology is illustrated in Section 6.4. Conclusions are 
summarized in Section 6.5.  

   6.2  Packing method for optimized marker packing 

 The problem addressed in this study is to pack a set of irregular objects { p  1 ,  p  2 , 
. . .,  p   n  } onto a stock sheet of infi nite length  C   L   and fi xed width  C   H   without overlap. 
Hence, a general methodology which integrates a grid approximation- based 
heuristic placement approach, a learning vector quantization neural network, and 
an ( μ  +  λ ) – evolutionary strategy is developed to obtain a packing pattern with 
minimal length. In this case, the following assumptions are taken into consideration 
to construct the methodology:

   •   The stock sheet is a rectangle with a fi xed width and an infi nite length.  
  •   Each object has only two orientations, 0° and 180°, since this study focuses on 

the marker planning process of the clothing industry. That is to say, the original 
object and the object obtained by a 180° counterclockwise rotation are allowed 
while an object is packed onto the stock sheet.  

  •   The length and the width of each object are not larger than the size of the 
stock sheet.  

  •   Each object can be placed at any position on the stock sheet.    

   6.2.1  Object representation 

 In this study, the digitized representation technique, grid approximation, proposed 
by Ismail and Hon (1992) was used to represent objects in any shapes, including 
convex and concave. In contrast to geometric algorithms, the major advantage of 
the grid approximation is that it is easier to detect overlap. By using this technique, 
each object is divided into a fi nite number of equalized cells, and the size of a 
selected cell is small enough to represent the objects.  P  ( i )   L   and  P  ( i )   H   denote the length 
and the width of an enclosing rectangle corresponding to the object  p   i  .  R  ( i )   x   denotes 
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the length of a cell, and  R  ( i )   y   denotes the height of a cell for the object  p   i  . (In 
this chapter,  R  ( i )   x     = 1 mm, and  R  ( i )   y    = 1 mm.) The object with a two- dimensional 
matrix of size  A  ( i )   H   ×  A  ( i )   L   is represented as follows:

    [6.1]  

 where    and    

 For each entry,    

 In addition, each object examined in this study had only two orientations: 0° and 
180°. The matrix representation of the rotated object (180° counterclockwise 
rotation) was obtained by simply modifying the matrix of the original object 
shown in the above- mentioned equation. Then the matrix of the rotated object 
becomes

    [6.2]  

 Similarly to the object representation, the stock sheet with an infi nite length and a 
fi xed width was discretized into a fi nite number of equisized cells of size  R   x   •  R   y  . 
Hence, the stock sheet with the length  C   L   and the width  C   H   were characterized by 
a matrix  U  of size  U   H   ×  U   L   as follows:

  U  = [ u   px ,  py  ], [6.3]  

 where    and    

 For each entry,     
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   6.1     System architecture of packing materials.     

   6.2.2  Heuristic placement approach 

 The architecture of the proposed heuristic placement approach is shown in 
 Fig. 6.1 . First, the grid approximation is used to represent any shaped objects in 
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two- dimensional matrices. Second, a learning vector quantization neural network 
is developed as a classifi cation heuristic to divide the objects into three classes 
according to their relative sizes: BIG, SMALL and OTHER. Third, an evolutionary 
algorithm is used to determine the packing information (i.e. the packing sequence 
of packing cells, objects’ orientation, and packing rules selection). Finally, a two- 
stage placement strategy is proposed for the construction of a packing pattern 
according to packing information, which is defi ned by the evolutionary strategy. 
Objects in the BIG and OTHER classes are packed onto the stock sheet according 
to the packing sequence of packing cells strings and packing rules selection strings 
defi ned by the evolutionary strategy. That is to say, the objects in the packing cells 
are placed by selecting rules from the 16 packing rules shown in  Fig. 6.2 , which 

   6.2     Packing rules. (a) Object 1 top, object 2 bottom. (b) Object 2 top, 
object 1 bottom. (c) Object 1 left, object 2 right. (d) Object 2 left, 
object 1 right. (e) Object I top, counterclockwise rotate 180, object 2 
bottom. (f) Object 2 top, counterclockwise rotate 180, object 1 
bottom. (g) Object 1 left, object 2 right, counterclockwise rotate 180. 
(h) Object 2 left, object 1 right, counterclockwise rotate 180. (i) Object 
1 top, object 2 bottom, counterclockwise rotate 180. (j) Object 2 
top, object 1 bottom, counterclockwise rotate 180. (k) Object 1 
left, counterclockwise rotate 180, object 2 right. (l) Object 2 
left, counterclockwise rotate 180, object 1 right. (m) Object 1 top, 
counterclockwise rotate 180, object 1 bottom. (n) Object 2 top, 
counterclockwise rotate 180, object 1 bottom, counterclockwise 
rotate 180. (o) Object 1 left, counterclockwise rotate 180, object 2 
right, counterclockwise rotate 180. (p) Object 2 left, counterclockwise 
rotate 180, object 1 right, counterclockwise rotate 180.     

�� �� �� �� ��



 Optimizing marker planning in apparel production 113

©  Woodhead Publishing Limited, 2013

are acquired by pattern planning experts through in- depth interviews with 
experienced pattern planners in the reference sites. Objects in the SMALL class 
are packed onto the stock sheet according to the packing sequence of packing 
cells strings and objects orientation strings defi ned by the evolutionary strategy. In 
other words, the objects might be rotated (180° counterclockwise rotation). 

  Object classifi cation 

 A learning vector quantization neural network (Kohonen, 1990) is developed as a 
classifi cation heuristic. The proposed network is trained by a set of examples 
inspired by experienced packing planners to diminish the size of a search space 
by dividing the objects into three classes according to their relative sizes: 
BIG, SMALL and OTHER. Once the network has been trained, it has the ability 
to classify various other kinds of objects that are similar to the training set, 
which makes the network powerful. For instance, according to the packing 
planners’ experience, if the size of an object in the BIG class is three times larger 
than the size of an object in the SMALL class, and the length of an object in 
the OTHER class is four times larger than the width of an object in the OTHER 
class, BIG, OTHER and SMALL classes are classifi ed. Without using a neural 
network, the experienced parameters such as three times and four times should 
be input into the system manually according to the packing planners’ experience. 
That is to say, before using a neural network, the classifi cation is based on 
the analysis of a great number of objects in practice. After the network has 
been trained by a large number of examples, instead of using packing 
planners’ experience, the objects can be automatically classifi ed by their relative 
sizes. 

 The BIG class is a class of bigger objects, while the SMALL class is a class of 
smaller objects (i.e. the size of an object in the BIG class is a multiplication of the 
size of an object in the SMALL class). On the other hand, the OTHER class is a 
class of objects that are very long but narrow or vice versa. Objects in the BIG 
class and the OTHER class are paired up to form packing cells. That is to say, each 
packing cell contains two objects that have the same or similar size. At the same 
time, each object in the SMALL class generates a single packing cell. The object 
packing sequence has thus been changed into the packing cells packing sequence, 
which decreases the size of the search space. For instance, it is assumed that the 
number of packed objects is 64 and the size of the search space is 64. However, 
after the procedure of object classifi cation, if the number of objects in the BIG, 
SMALL and OTHER classes is 20, 8 and 36 respectively, then the size of the 
search space is reduced to 36. The key steps of the learning vector quantization 
neural network approach are presented below:

   •    Step 0:  Initialize reference vectors, weight vectors, and learning rate  α (0).  
  •    Step 1:  While the stopping condition is false, perform steps 2–6.  
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  •    Step 2:  For each training input vector (i.e. the area of each piece and the 
narrow factor of each piece), perform steps 3–4.  

  •    Step 3:  Find  J  so that the Euclidean distance between the input vector and the 
weight vector for the jth output unit is a minimum.  

  •    Step 4:  Update the weight vector  w   J   as follows:

 if  T  =  C   J   , then  w   J    ( new )  =  w   J    ( old )  +  α ( X  −  w   J    ( old ) ); 
 if  T  ≠  C   J   , then  w   J    ( new )  =  w   J    ( old )  −  α ( X  −  w   J    ( old ) );   

  where  X  denotes the training vector,  T  denotes the correct class for the training 
vector, and  C   J   denotes the class represented by the jth output unit.  

  •    Step 5:  Reduce learning rate  α .  
  •    Step 6:  Test the stopping condition, which may specify a fi xed number of 

iterations or the learning rate reaching a suffi ciently small value.     

  Two- stage placement strategy 

 A two- stage placement strategy is proposed as an alternative to construct a 
packing pattern according to the packing information (i.e. the packing sequence 
of packing cells, objects orientation, and packing rules selection), which is defi ned 
by the evolutionary strategy. In this case, the enclosing rectangles of the packing 
cells are fi rst examined, and then the packing cells are compacted directly. In 
particular, instead of implementing the compaction routine in a single step after 
all the enclosing rectangles of the packing cells are allocated, the compaction 
routine is done when each enclosing rectangle is placed. The advantage of this 
compaction routine is the ability to obtain a tight packing pattern, providing more 
space for the coming packing cells. It is obvious that the two- stage placement 
strategy improves the packing pattern quality without compromising the 
computational effort. The key steps of the two- stage placement strategy are 
presented as follows:

   •    Step 1:  Place the coming packing cell  C   i   j  + 1   at the uppermost and infi nite 
right corner of the stock sheet. Due to the approximation of the packing cell 
by its enclosing rectangle at the fi rst stage, the matrix of the stock sheet 
becomes

    [6.4] 

 with submatrices  and , 

 where  and .   
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  •    Step 2:   S hift the packing cell  C   i   j   + 1   leftward and downward until it meets other 
packing cells and cannot be moved again. In view of the property of matrices, 
it is convenient to shift the packing cell by counting the empty cells in the 
matrix. Then the matrix of the stock sheet becomes

    [6.5]   

  •    Step 3:  Represent the packing cell  C   i   j   + 1   at the second stage by using its 
enclosing rectangle without approximating it, and then the matrix of the stock 
sheet is

    [6.6] 

 with submatrices , 

 where .   

  •    Step 4:  Compact the packing cells by removing the vacant cells between 
these two matrices of packing cells, and then the matrix of the stock sheet 
becomes    

    [6.7] 

 with submatrices,  for each entry, . 

 Furthermore,  and  satisfy the following conditions:

     .
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 An example of how the objects are placed according to the two- stage placement 
strategy is shown in  Fig. 6.3 .    

   6.3  Evolutionary strategy (ES) for optimizing 

marker planning 

 In this study, the ( μ  +  λ ) – evolutionary strategy (ES) was adopted. In contrast to 
the elitist strategy of genetic algorithms, with the aid of the ( μ  +  λ ) – ES, parents 
survive until they are superseded by better offspring (Bäck  et al. , 1997). The 
following notation is used to facilitate the presentation:

    μ    = the population size of parents  
   λ    = the population size of offspring  
   s   k     =  k  th individual in the individual space  
   f ( s   k  )   = the fi tness value of individual  s   k   ( k  = 0,1,2,. . ., μ  +  λ  − 1)  
   t    = generation index ( t  = 0,1,2,. . .)    

 It is assumed that the current generation is  t  and the current population is 
represented by  X(  t  ) , which is a population of  μ  individuals, and the general outline 
of the ( μ  +  λ ) – ES is illustrated in the block diagram in  Fig. 6.4 .

   6.3     (a–d)Procedures of two- stage placement strategy: the object at 
the top right in Step 1 represents the coming packing cell  C   ij  +1.     
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   6.4     Block diagram of the ( μ  +  λ ) − ES.     
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   •    Step 1:  Set  t  = 0 and  g enerate an initial population of  μ  individuals randomly.  
  •    Step 2:  Generate a mating pool by pre- selection (see the selection operation 

  section for details).  
   Select individuals from the population according to a specifi ed selection 

operation. The selected individuals are then placed into a mating pool.  
  •    Step 3:  Perform recombination and mutation.  
   Pair up the individuals in the mating pool and generate  λ  ( ≥  μ ) new- born 

offspring individuals using the operators of recombination and mutation. In 
this study, each chromosome consists of three portions. For the fi rst portion 
of the chromosome, discrete recombination operators, repeated exchange 
mutation operators, and evolutionary inversion mutation operators are 
employed. For the second portion of the chromosome, traditional gene- 
alter mutation operators and traditional discrete recombination operators 
are developed. For the third portion of the chromosome, exchange mutation 
operators and traditional discrete recombination operators are developed.  

  •    Step 4:  Create a new population for the next generation by post- selection (see 
  the selection operation section for details).  

   Select  μ  best individuals from the combined population of parents ( μ  
individuals) and offspring ( λ  individuals). All the selected  μ  individuals are 
then collected to form a new population known as  X(  t   + 1) , which replaces 
 X(  t  )  and serves as the population of individuals for the next generation  t   + 1.  

  •      Step 5: Check the pre- specifi ed stopping condition.  
  In this case, the pre- specifi ed stopping condition is satisfi ed when the 

pre- defi ned maximum number of generations is reached or no further 
increase in the fi tness function values of the individuals is obtained. If it 
is satisfi ed, terminate the search process, and return to the best solution 
as the fi nal solution. Otherwise, increase  t  by 1 and go to step 2.     

   6.3.1  Structure of the individuals 

 Although there are many different representations to implement evolutionary 
algorithms, the most natural representation for the object packing problem is 
integer representation. In this study, each chromosome, as shown in  Fig. 6.5 , 
consists of three portions. A set of bits in the fi rst portion of the string is a set of 
integer numbers to indicate the packing sequence of packing cells, which are 
shown as  Ω  = ( i  1 , i  2 ,. . ., i   n  ),  i : index of the packing cell  C   i  . The order of a gene in an 
individual is the order to examine the packing cell that is identifi ed by the gene. A 
set of bits in the second portion of the string is a set of 0  – 1 binary decision 
variables to represent the object orientation (i.e. 0° or 180°) for each object in the 
SMALL class, and a set of bits in the third portion of the string is a set of integer 
numbers containing information to select packing rules for the BIG and OTHER 
classes. Since factors such as object orientation and packing rules selection in the 
second and third portions of the string complicate the packing problem, this new 
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chromosome structure could prevent potential or even detrimental squashing of 
the solution space. The length of the new chromosome is 3N, where N is the 
number of cells to be packed.  

   6.3.2  Selection operation 

 In this study, two selection schemes, pre- selection and post- selection, are 
implemented. The pre- selection scheme is stochastic, while the post- selection 
scheme is deterministic. For the pre- selection operation shown in  Fig. 6.4 , one of 
the best- known selection schemes, called the ‘biased roulette wheel scheme’ 
(Goldberg, 1989), was used. The probability of selecting an individual  s   k   from the 
current population  X(t)  is given by the following equation:

   . [6.8]  

 In any generation, the individuals are selected by their respective selection 
probabilities governed by the above- mentioned equation. If the individual  s   k   
represents a candidate solution, then the fi tness function is  f ( s   k  ) = 1/ C   L  . Therefore, the 
candidate solutions with lower objective function values have higher selection 
probabilities. Through this connection, the optimal objective function value can be 
obtained by maximizing the fi tness function values of the individuals. When the pre- 
selection process is completed, the individuals in the mating pool will then be paired 
up to generate  λ  new offspring by recombination and mutation operations. 

 In the case of the post- selection operation in  Fig. 6.4 , the combined population 
of parents ( μ  individuals) and offspring ( λ  individuals) are sorted by the fi tness 
function values. The  μ  best individuals with higher fi tness function values will 
survive while the  λ  remainder individuals with lower fi tness function values will 
be discarded.  

   6.3.3  Recombination operation 

 The discrete recombination operator was used in this study. The procedure of 
the discrete recombination operator for the fi rst portion of the chromosome is 
presented on the next page:

   6.5     Chromosome structure.     
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   1.   Select two parents randomly from the mating pool.  
  2.   Randomly generate a decision string with the same length as the parent 

chromosomes. Each bit in the decision string can take a value of ‘1’ or ‘2’. A 
value of ‘1’ indicates that the corresponding components of the offspring 
chromosome are copied from the fi rst parent chromosome; otherwise, ‘2’ 
represents that the positions in the offspring chromosome are fi lled with the 
elements of the second parent chromosome.  

  3.   Fill some positions with the offspring chromosome by copying corresponding 
elements of the fi rst parent chromosome associated with a ‘1’ in the decision 
string. That is to say, the same components appear in the same positions in the 
offspring chromosome as they do in the fi rst parent chromosome.  

  4.   With reference to the second parent chromosome, the components present in the 
offspring chromosome are omitted; otherwise, the remaining part is reserved.  

  5.   The remaining positions in the offspring chromosome are fi lled with the 
reserved elements of the second parent chromosome in the same order 
whenever the decision string contains a ‘2’.    

 Consequently, each offspring chromosome consists of two portions: a set of bits 
in the fi rst portion of the string preserves information from the fi rst parent 
chromosome, and a set of bits in the second portion of the string incorporates 
information from the second parent chromosome.  Figure 6.6  illustrates the 

   6.6     Discrete recombination operator.     
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mechanism of the recombination process graphically. For the second and third 
portions of the chromosome, the traditional discrete recombination operator is 
employed, in which each bit is randomly copied from either the fi rst or the second 
parent chromosome.  

   6.3.4  Mutation operation 

 After the recombination process is completed, instead of using the traditional gene- 
alter mutation operation (Goldberg, 1989), for the fi rst portion of the chromosome 
the repeated exchange mutation operation and the evolutionary inversion mutation 
operation are employed to prevent infeasible solutions in this study. In contrast to the 
recombination operator, the mutation operator is always regarded as a background 
operator. However, Bäck  et al.  (1997) suggested that the mutation operator becomes 
more productive as the ES converges. The repeated exchange mutation operator is 
used to introduce new schemata into the population in order to prevent premature 
convergence of the population, while the evolutionary inversion mutation operator is 
adopted to manipulate the local search process over the solution space like an uphill- 
climbing technique to improve the capability of the local search process. The 
algorithm regulates a balance between the exploration and exploitation of the solution 
space. The repeated exchange mutation operator has the following procedures:

   •    Step 1:  Generate a random integer  ω  within a range of [1,  l ] (where  l  is the 
length of the chromosome) to determine the number of exchanges.  

  •    Step 2:  Randomly choose two bits along the string and the two selected bits 
are exchanged.  

  •    Step 3:  Iteratively implement step 2  ω  times.    

  Figure 6.7 (a) shows an illustration of step 1 of the above- mentioned procedure. 
 The procedure of the evolutionary inversion mutation operation is outlined below:

   •    Step 1:  Set  Loop_num = 0 . Generate a random integer:  θ  within a range of [1, 
 l ] (where  l  is the length of the chromosome) to determine the number of loops.  

  •    Step 2:  Two cutting points are selected randomly along the length of the 
chromosome. The substring between these two cutting points is reversed and 
the remaining part of the chromosome is preserved.  

  •    Step 3:  If the fi tness function value of the newly generated individual is higher 
than the original one, then the inversion operation in the above- mentioned 
step is implemented; otherwise, go back to the fi rst step.  

  •    Step 4:  If  Loop_num  ≥  θ  is satisfi ed, terminate the process; otherwise, increase 
 Loop_num  by 1, then go to step 2.    

 Figure 6.7(b) illustrates an example of a simple inversion mutation process 
presented in step 2. 

 For the second portion of the chromosome, the traditional gene- alter mutation 
operator (Burke and Kendall, 1999) was adopted. For instance, if an offspring 
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individual is encoded by the binary representation (0 1 1 0 0 1), then six random 
numbers ranging from 0.00 to 1.00 are drawn: (0.653, 0.231,  0.007 , 0.014,  0.003 , 
0.024). If the mutation rate is 0.01, two random numbers in the above- mentioned 
array have their values smaller than the mutation rate. These two numbers will 
trigger the mutation operation to take place in the third and fi fth bits of the string. 
The mutation operator causes the bits to change from 1 to 0 or 0 to 1 whenever the 
mutation operations are triggered. The resulting individual becomes ( 0 1  0  0  1  1 ). 
For the third portion of the chromosome, exchange mutation operator (Bäck and 
Hoffmeister, 1991) is employed. The procedure of the exchange mutation operator 
is to randomly choose two bits along the string, and then the two selected bits are 
exchanged.   

   6.7     Mutation operators. (a) Exchange mutation operator. 
(b) Inversion mutation operator.     
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   6.4  Experiments to evaluate performance 

 In this section, eight real examples are used to evaluate the performance of the 
proposed methodology.  1   First of all, the results of the proposed methodology are 
compared with those obtained by the genetic algorithm (GA) with the elitist 
strategy and the heuristic placement (HP) approach (GA+HP approach). The 
GA+HP approach is the same as the proposed approach except that a GA with 
elitist strategy is used to replace the ES so that the performance of GA and ES can 
be compared in the problem investigated. Then the results are also compared with 
those derived by industrial practice (IP) in order to demonstrate the effectiveness 
of the proposed methodology. 

  Table 6.1  lists six real examples taken from a marker planning process of the 
clothing industry. In all experiments, the parameters adopted for the evolutionary 
strategy after testing were  μ  = 50,  λ  = 100, recombination rate = 0.7, mutation rate 
= 0.03, and maximum number of generations = 500. In addition, the GA with the 
elitist strategy was also used to solve the examples for comparison purposes, and 
the genetic parameters adopted for the GA after testing were population size = 100, 
crossover rate = 0.7, mutation rate = 0.003, and maximum number of generations 
= 500. Due to space limitations, only example SWIM3 was used to evaluate the 
performance of the evolutionary strategy by the off- line performance measure:

 Off-line performance measure=    [6.9]  

 where  z   t   is the best objective function value among the candidate solutions in 
generation  t ,  z *  t   is defi ned by the equation

  z *  t   = min{ z  1 ,  z  2 ,. . .,  z   t  }. [6.10]  

  Table 6.2  shows that the average objective function value of the fi nal solutions 
among the fi ve runs for example SWIM4 is 138.85, which is less than the best 
solutions obtained by the GA.  Table 6.2  also shows that the proposed algorithm 
has better off- line performance than those of the GA and also outperforms the GA 
in terms of quality of the fi nal solution. The proposed algorithm is superior to the 
GA as a function optimizer. 

    Table 6.1     Data sets used in the illustrative examples  

  Problem name    Number of objects    Sheet width (inches)  

 SHIRT1   48  48 
 SHIRT2   64  48 
 SHIRT3   80  48 
 SWIM1   60  60 
 SWIM2   78  60 
 SWIM3  108  60 

1 The detailed given data of the eight experiments are available upon request.
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 Each example listed in  Table 6.1  was run fi ve times by the ES and the GA while 
fi ve trials were conducted by fi ve marker planners.  Table 6.3  summarizes the best 
results of the six packed stock sheets, and the results obtained by the proposed 
approach are marked in bold. The effi ciencies of the packing pattern for the 
proposed approach, the GA+HP approach, and the IP are shown in the third, 
fourth and fi fth columns of  Table 6.3 . The effi ciency was measured as a quotient 
between the area of packed objects and the used rectangle area of the stock 
sheet (Gomes and Oliveira, 2006). The results indicate that the proposed 
methodology improves the effi ciency of the packing pattern and shortens its 
length.  Table 6.4  shows the details of the improvement percentage of each 
example. It reveals that the average improvement of the examples is 1.92% for the 
fi rst comparison in column 2, and 9.99% for the second comparison in column 3. 
Finally, the packing patterns for each example generated by the proposed 
methodology, the GA+HP approach and the IP approach are presented in  Fig. 6.8 , 
 6.9  and  6.10  respectively.  

    Table 6.2     Comparison of the off- line performance by the proposed approach and 
the genetic algorithm  

 GA  ES 

 Overall best solution among 5 runs  141.74  138.64 
 Average of the best solution among 5 runs  142.17  138.85 
 Best off- line performance among 5 runs  143.45  138.98 
 Average off- line performance among 5 runs  144.05  139.57 

   Notes: ES, evolutionary strategy; GA, genetic algorithm.     

    Table 6.3     A summary of the results for the eight illustrative examples  

 Problem 
name 

 Number 
of 
objects 

 ES+HP 
sheet 
length 
(inches) 

 Effi ciency 
(%) 

 Proposed 
methodology 
GA+HP Sheet 
length 
(inches) 

 Effi ciency 
(%) 

 IP Sheet 
length 
(inches) 

 Effi ciency 
(%) 

 SHIRT1   48  146.60  75.91  146.94  75.74  151.78  73.21 
 SHIRT2   64  193.72  76.61  201.32  73.71  203.21  73.03 
 SHIRT3   80  243.44  76.20  248.71  74.58  260.69  71.16 
 SWIM1   60   92.60  58.62   94.94  57.18  100.30  54.13 
 SWIM2   78  122.49  58.65  126.64  56.73  133.06  53.99 
 SWIM3  108  138.64  57.84  141.74  56.54  147.85  54.20 

   Notes: GA, genetic algorithm; HP, heuristic placement; IP, industrial practice.     
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   6.8     The best packing pattern generated by the proposed approach 
for the illustrative examples: (a) SHIRT1, (b) SHIRT2, (c) SHIRT3, 
(d) SWIM1, (e) SWIM2 and (f) SWIM3.     

�� �� �� �� ��



126 Optimizing decision making

©  Woodhead Publishing Limited, 2013

   6.9     The packing pattern generated by the GA+HP approach for the 
illustrative examples: (a) SHIRT1, (b) SHIRT2, (c) SHIRT3, (d) SWIM1, 
(e) SWIM2 and (f) SWIM3.     
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   6.10     The packing pattern derived from the marker planner in the 
clothing industry for the illustrative examples: (a) SHIRT1, (b) SHIRT2, 
(c) SHIRT3, (d) SWIM1, (e) SWIM2 and (f) SWIM3.     
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   6.5  Conclusion 

 In this study, a heuristic placement approach based on grid approximation, a 
learning vector quantization neural network, and an integer representation- based 
evolutionary strategy are proposed to establish an effective methodology for 
solving irregular object packing problems. This approach has many advantages. 
First, with the placement approach based on grid approximation, it provides the 
system designers with an easier way to detect whether overlap occurs. Second, the 
two- stage placement strategy improves the packing pattern quality without 
compromising the computational effort. Third, the formulation of optimal packing 
information can be accomplished easily by manipulating the composition of the 
integer string format. Fourth, a learning vector quantization neural network is 
developed as a classifi cation heuristic to reduce the size of the search space. Fifth, 
adding factors such as object orientation and packing rules selection in the second 
and third portions of the string could prevent potential or even detrimental 
squashing of the solution space. Finally, the proposed evolutionary strategy can 
maintain a better balance between exploitation and exploration of the solution 
space by generating the evolution of the populations. The effectiveness of the 
proposed methodology is demonstrated through various experiments, and the 
results of this methodology are compared with those of the genetic algorithm 
using the heuristic placement approach and the results derived from marker 
planners in the industry. The results show that the proposed methodology provides 
an effective means to increase the usability of the stock sheet. 

 The proposed methodology can handle convex and concave shapes well and 
obtain the global optimization solutions. However, this study has not compared 
the performance of the proposed approach with the existing approaches in the 
literature. Based on various benchmark problems in open literature, future work 
will aim at the performance comparison of the proposed approach with various 
existing approaches, such as NFP techniques, phi- function techniques and the 
new bottom- left-fi ll heuristic algorithm of Burke  et al. , (2006) Moreover, the 

    Table 6.4     Method comparisons  

 Problem name  Improvement (proposed 
methodology vs. GA+HP) (%) 

 Improvement (proposed 
methodology vs. IP) (%) 

 SHIRT1  0.23  3.4 
 SHIRT2  3.78  4.67 
 SHIRT3  2.12  6.62 
 SWIM1  2.46  7.67 
 SWIM2  3.28  7.94 
 SWIM3  2.18  6.23 

   Notes: GA, genetic algorithm; HP, heuristic placement; IP, industrial practice.     
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proposed approach will also be fi ne- tuned, particularly in the parameter setting, 
which infl uences the optimization performance.  
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   Abstract:    Today’s apparel industry must respond to an ever- changing fashion 
market. Just- in-time production is a must- go direction. The apparel industry 
generates more production orders, which are split into smaller jobs to provide 
customers with timely and customized fashion products. Production planning is 
even more challenging if the due times of production orders are fuzzy and 
resource competing. In this chapter, genetic algorithms and fuzzy set theory 
generate just- in-time fabric- cutting schedules in a dynamic and fuzzy 
environment. Real production data were collected to validate the proposed 
genetic optimization method. Results demonstrate that genetically optimized 
schedules improve the satisfaction of production departments and reduce costs.  

   Key words:    genetic algorithms, fuzzy set theory, parallel machine scheduling, 
fabric cutting, apparel.   

    7.1  Introduction 

 Apparel production is a type of assembly manufacture that involves a number of 
processes. Fabric- cutting operation is done in a fabric- cutting department, which 
usually serves several downstream sewing assembly lines. Effective upstream 
fabric- cutting operation ensures the smoothness of downstream operations, and 
thus is vitally important to the overall system effi ciency. Production scheduling of 
apparel production is a challenging task due to a number of factors. First of all, 
fashion trends are always unpredictable; thus just- in-time (JIT) production is 
employed to ensure a short production time- to-market. Moreover, in order to cope 
with the increasing demand for product customization, the quantity of garments 
per production order tends to be smaller, and thus the number of production orders 
processed by the manufacturer has become larger. In this chapter, JIT production 
scheduling of manual cutting department operation is investigated. 

   7.1.1  Just-in-time (JIT) scheduling 

 Production scheduling has been extensively studied, and previous literature has 
focused more on single regular measures, such as mean fl ow- time and mean 
lateness. Since the 1980s, the concept of penalizing both earliness and tardiness 
has spawned a new and rapidly developing line of research in the scheduling fi eld 
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(Baker and Scudder, 1990). In a JIT environment, both earliness and tardiness 
must be discouraged, since jobs fi nished early increase inventory cost while late 
jobs lead to customers’ dissatisfaction and loss of business goodwill. Thus an 
ideal schedule is one in which all jobs fi nish within the assigned due dates. The 
objectives of early/tardy (E/T) scheduling could be interpreted in different ways, 
for example minimizing total absolute deviation from due dates, job- dependent 
earliness and tardiness penalties, non- linear penalties, and so forth (see Baker and 
Scudder, 1990 for a comprehensive survey). 

 A main stream of E/T scheduling research is regarding the scheduling of a group 
of independent jobs with a common due date (De  et al. , 1991, 1993, Hall and Posner, 
1991; Hall  et al. , 1991; Hoogeveen and van de Velde, 1991). The common due date 
is either a known property of the problem or a decision variable to be optimized 
along with the job sequence. The latter is equivalent to the former for the single- 
machine case when the common due date is large (long) enough (Hoogeveen and 
van de Velde, 1991; De  et al. , 1991, 1993). Therefore, the former case of scheduling 
problem with a known due date can be divided into two classes: large due date 
(unrestrictive case) and small due date (restrictive case). Large due date problems 
are analytically solvable (Kanet, 1981; De  et al. , 1993), while small due date cases 
are proven NP-hard even with linear E/T penalties (Hoogeveen and van de Velde, 
1991; Hall  et al. , 1991; De  et al. , 1991). In the more complex case of small due date, 
researchers have so far obtained limited results for some special cases using various 
techniques such as explicit enumeration algorithms (Bagchi,  et al. , 1986), branch 
and bound algorithms (Bagchi  et al. , 1987; Szwarc, 1989) and pseudo- polynomial 
dynamic programming algorithms (Hall  et al. , 1991, Hoogeveen and van de Velde, 
1991). In the apparel industry, a single cutting department works on different 
production orders simultaneously in order to suit the needs of downstream sewing 
lines. In contrast to the above common due date cases, each production order, which 
is composed of a group of smaller jobs, has a distinct due time.  

   7.1.2  Parallel machine scheduling 

 The above- mentioned studies are mainly for single machine production 
scheduling. The scheduling of cutting department operation is similar to a 
traditional parallel machine scheduling (Mok  et al. , 2007). Figure 7.1 shows an 
example of the confi guration of the cutting department. 

 In parallel machine scheduling, a batch of jobs is scheduled to be processed by 
any one of a number of available machines so that the best overall system 
performance is achieved (Cheng and Sin, 1990). In cutting departments, fabric- 
cutting jobs that belong to different production orders are to be processed on one 
of the parallel spreading tables so that the demand from downstream sewing lines 
can be fulfi lled in a timely manner. Research on parallel machine scheduling in the 
JIT context has received much attention in relatively recent years. Cheng and Chen 
(1994) showed that parallel machine scheduling problem is NP-hard when due 
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date is a decision variable. Cheng  et al.  (1995) minimized the maximum weighted 
absolute lateness on parallel machine using genetic algorithms. Cheng  et al.  (1996) 
discussed the scheduling of multiple simultaneously available jobs on parallel 
machines with controllable processing times. Chen and Lee (2002) studied the 
parallel machine scheduling with a common due window using branch and bound 
algorithms. However, the above results assume all jobs with a common due date. 

 Moreover, fabric- cutting scheduling has the distinctive feature that two 
interdependent processes (spreading and cutting) must be scheduled 
simultaneously. The spreading operation must be completed before the cutting 
operation can start. The spreading operation can accordingly be viewed as a setup 
operation for the processes of cutting. In addition, fabric- cutting scheduling is a 
resource- constrained scheduling problem (see Section 7.2.3). Ventura and Kim 
(2003) investigated parallel machine scheduling with non- common due dates and 
additional resource constraints; however, all job processing times are assumed 
constant in their investigation. In a fabric- cutting scheduling problem, each job 
has its individual spreading and cutting processing times.  

   7.1.3  Fuzzy scheduling 

 The traditional production scheduling studies assumed that the due times are crisp 
values. In practice, it is sometimes allowable to complete jobs beyond certain due 
times in the apparel industry. This is because apparel manufacturers determine 
internally the due time windows of various production orders for different 

   7.1     Layout of a fabric- cutting department consisting of four cutting 
tables with examples of fabric lays being spread.     
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production departments, including cutting, sewing, pressing and packaging 
departments, based on the fi nal delivery due dates and production capacity. Such 
internal due time windows are determined to ensure on- time delivery of fi nal 
products and reduce work- in-progress. Fuzzy set theory has been applied to 
handle the scheduling problem in a fuzzy environment. 

 Fuzzy set theory (Zadeh, 1965) is an attractive framework for dealing with 
‘fuzzy’ (uncertain) information, and there is indeed an increasing interest in 
fuzzy scheduling in academia and industry (Słowiński and Hapke, 2000). In fuzzy 
scheduling research, fuzzy numbers, an extension of the concept of confi dence 
intervals, are used to model the imprecise time parameters. In this chapter, the 
production- order due- time windows are presented in the form of fuzzy numbers. 
Genetic algorithms are then used to optimize the cutting department production 
schedules such that the requirement by the downstream sewing lines for fabric 
cut- pieces for assembly can be maximally satisfi ed. 

 The outline of this chapter is as follows. Section 7.2 provides a general 
description of the fabric- cutting system, including model formulation, fuzzy due 
time defi nition, and job placement mechanism. The general methodology of 
genetic optimization of fabric- cutting scheduling with fuzzy due times is described 
in Section 7.3. The proposed method is demonstrated by two real production cases 
in Section 7.4, in which the genetically optimized results are compared with those 
implemented by industrial practice. Finally, conclusions and recommendations 
for future work are outlined.   

   7.2  Problem formulation in fabric- cutting operations 

 In a traditional fabric- cutting department, there are several key operations 
involved, which are shown in Fig. 7.2. The fabric- cutting operation studied in this 
chapter satisfi es the following assumptions:

   •   The manual spreading carts for spreading and manual straight- knife cutters 
for cutting are always available throughout the scheduling period.  

  •   Jobs (fabric lays) are always available to be loaded into the system and to be 
processed by any of the spreading carts and cutters on any of the parallel 
spreading tables.  

  •   No job can be processed on more than one spreading table simultaneously.  
  •   There is no precedence constraint on the jobs.    

   7.2     Workfl ow of a fabric- cutting department.     
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   7.2.1  Effi cient manual cutting systems 

 The system investigated in this chapter assumes an  effi cient  manual cutting model 
confi guration. In an effi cient system, after spreading and cutting operations, fabric 
pieces are taken away from the spreading tables for bundling operations, which 
helps to make space for spreading new jobs. In an effi cient fabric- cutting 
department, a group consisting of four operators is normally assigned to each 
spreading table. The group is divided into two sub- groups in which two operators 
are responsible for fabric spreading and the remaining two operators are 
responsible for cutting the fabric lay that has been spread. The division of labor 
allows operators to focus on their competent operations, thus improving the 
overall effi ciency. Spreading operators continue to spread new fabric lays (jobs) 
once they have fi nished the present jobs. The purpose is to reduce delay due to the 
switching between spreading and cutting. Because of the limited length of 
spreading tables, idle time could occur if there were insuffi cient free area on 
the spreading table available for the new fabric lay. Cutting operators then cut 
the fabric lays according to the spreading schedule, that is,  σ   s  = σ   c  , on each 
spreading table. Obviously, cutting idle time occurs when the cutting operators 
have fi nished the current job while the new job is still being spread and is not yet 
ready to be cut.  

   7.2.2  Fuzzy due times representation 

 As discussed in Section 7.1.1, both tardiness and earliness are discouraged in a 
JIT environment. A generic E/T model is represented as

   , [7.1]  

 where  E   k   = max(0,  d   k   −  C   k  ) is the earliness of job  k  with completion time  C   k   and due 
time  d   k  , and  T   k   = max(0,  C   k   −  d   k  ) is the corresponding tardiness. In Eq. 7.1,  α   k   and 
 β   k   are penalty weights for earliness and tardiness, respectively. JIT scheduling 
focuses on the best schedule to minimize the objective function  f  ( S ). 

 In this chapter, the due times of different production orders are represented as 
trapezoidal fuzzy numbers (TrFN) with the following defi nition:

   . [7.2]  
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 In the apparel industry, the factory manager determines departmental due time 
windows, rather than precise due time, of different production orders so as to 
ensure smoothness of downstream operations and on- time delivery of fi nal 
products. Such due time windows represent the managerial preference regarding 
different values of production order completion time. 

 As shown in Fig. 7.3,  d    A  ,  d    B  ,  d    C   and  d    D   are crisp real numbers such that 0 ≤  d    A   
≤  d    B   ≤  d    C   ≤  d    D  . The membership value of these fuzzy numbers expresses the 
degree of satisfaction associated with corresponding job completion time: 
complete satisfaction if the job is completed during the time interval of  d    B   to  d    C  ; 
the degree of satisfaction increases linearly from time  d    A   to  d    B   and decreases 
linearly from time  d    C   to  d    D  ; and complete dissatisfaction if the job is completed 
before  t  =  d    A   or beyond  t  =  d    U  . 

 When the due dates are crisp, the weights  α  and  β  in Eq. 7.1 denote the decision- 
maker’s view on how signifi cantly each job’s lateness or earliness affects the 
overall system. In the case of fuzzy due date, the steepness of change between 
complete satisfaction and complete dissatisfaction (i.e. the side slope) represents 
the same decision- maker’s view.  

   7.3     Trapezoidal fuzzy due date ( d   A  ,  d   B  ,  d   C  ,  d   D  ).     

   7.2.3  Job placement mechanism 

 The main objective of fabric- cutting scheduling in a JIT environment is to 
maximize the satisfaction of downstream production units. Minimizing production 
makespan (in other words, minimizing operator idle time) is another key issue. 
Since each fabric- cutting job involves both spreading and cutting operations, the 
job placement algorithm of manual cutting systems is described here to explain 
the way jobs are allocated to different spreading tables, and thus to calculate the 
makespan. 

 In a cutting department with multiple spreading tables,  m , a fi rst- come-
fi rst- serve rule is always applied when assigning a sequence of jobs to be 
processed by different spreading tables. For a given job sequence,  σ , jobs are 
allocated to different spreading tables in accordance with the following placement 
algorithm:
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   1.   Allocate the fi rst  m  jobs,  J   i   ( i  = 1, . .,  m ), to the  m  spreading tables, set  i  =  m .  
  2.   If any spreading table has enough space for the job  J   i + 1   (free area > fabric 

length  φ ( J   i  +  1  )), allocate  J   i  +  1   to the fi rst available spreading table and set  i  =  i +1.  
  3.   If there is no spreading table available (free areas of all  m  tables < fabric 

length  φ ( J   i  +  1  )), wait until enough spreading area is obtained by clearing up the 
cutting job  J   j   queues.  

  4.   Repeat procedures 2 and 3 until all the jobs in the sequence are allocated.    

 According to the described job placement algorithm, individual schedules at 
different spreading tables are defi ned for a given job sequence. Thus, the system 
makespan time, that is, the maximal operation duration of the  m  spreading tables, 
can be calculated accordingly. Thus, using this placement algorithm, the parallel- 
machine (spreading table) scheduling problem becomes a single sequencing 
optimization problem with multiple objectives to maximize the degree of 
satisfaction of downstream sewing lines and reduce overall production makespan 
in the JIT context.   

   7.3  Genetic optimization of fabric scheduling 

 In apparel manufacturing, production planners assign a sequence of jobs (fabric 
lays) to different spreading tables for spreading, cutting and bundling. According 
to the job placement algorithm described in Section 7.2.4, the parallel machine 
scheduling optimization problem in the fabric- cutting department is reduced to a 
single sequencing optimization problem. The job sequencing problem is a 
permutation problem with  n  jobs, and the total number of possible solution is  n ! 
(e.g.  n ! = 1.24 × 10 61  for  n  = 48). The search space signifi cantly expands as the 
number of jobs,  n , increases, which makes it attractive to use genetic algorithms 
(GAs), a metaheuristic technique, to search for the best job processing sequence 
in a manual fabric- cutting department. 

 In the fabric- cutting scheduling problem, a group of jobs belonging to a defi ned 
set of production orders with different due times is to be processed on one of the 
parallel spreading tables. Earliness/tardiness scheduling with identical earliness 
and tardiness penalties for all jobs has been shown to be NP-complete (Baker and 
Schudder, 1990). In a more complex case when each job has its own earliness and 
tardiness weightings, it is implausible that an optimal schedule for the real- sized 
problem can be obtained by conventional time polynomial algorithms. However, 
GAs solve complex industrial optimization by iterations. 

   7.3.1  Individual representation 

 To apply GAs in solving an industrial optimization problem, it is usually assumed 
that a potential solution to the problem may be represented as a set of variables. 
These variables (‘genes’) are joined together to form a string of values 
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(‘chromosome’). The string can be of binary digits, integers or real numbers. 
Although the binary representation proposed by Holland (1975) is most widely 
employed, GAs are not restricted to binary representation. The choice of 
representation depends on the nature of the problem. In this job sequencing 
problem, integer chromosome representation is proposed to indicate the job 
processing sequences. An example of integer chromosome representation is 
shown in Fig. 7.4.  

   7.4     Chromosome representation.     

   7.3.2  Fitness evaluation 

 In GAs, a fi tness function is defi ned to measure the fi tness of each individual 
chromosome so as to determine which will reproduce and survive into the 
next generation. Given a particular chromosome, the fi tness depends on how 
well that individual solves a specifi c problem. Maximizing degree of satisfaction 
of the downstream production units is the prime scheduling objective in JIT 
production. 

 In the genetic optimization of a fabric- cutting sequence problem, individual 
chromosomes represent a job processing sequence. Once a job sequence is 
defi ned, jobs are allocated to different spreading tables using the job placement 
algorithm described in Section 7.2.4. Thus, the completion times of individual 
jobs are evaluated accordingly. Such jobs belong to a set of production orders, and 
each of these production orders has its distinctive fuzzy due time. For a job  J   k   
belonging to production order  θ ,  θ  has a fuzzy due time   D~  θ  . If job  J   k   completes at 
time  C   k  , the degree of satisfaction with  C   k   with regard to fuzzy due time   D~  θ   is 
naturally expressed by means of number  υ ( C   k  ,   D

~  θ  ) defi ned by

  υ ( C   k  ,   D
~  θ  ) =   D~  θ  ( C   k  ). [7.3]  

 Taking Fig. 7.5 as an example, jobs  J  1  and  J  2  are completed at time  C  1  = 42 minutes 
and  C  2   = 65 minutes, and the degrees of satisfaction achieved are 0.5 and 0.85 
respectively with regard to a fuzzy due time of   D~  ( t ) = (38, 46, 60, 94). 

 The JIT fabric- cutting schedule can be optimized using GAs such that the 
overall degree of satisfaction,

    [7.4]  

 is maximized. In Eq. 7.4,  w   DS   is the weight for degree of satisfaction, and 
 x(  J k    ,  θ   )  is the state value, which indicates whether or not job  J   k   belongs to 
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production order  θ .  x ( θ ,  J   k  ) = 1 if job  J   k   belongs to production order  θ ; 
 x ( θ ,  J   k  ) = 0. 

 In a fabric- cutting environment, it is very important that the production schedule 
should be optimized in such a way that the production makespan, the longest 
completion time among different spreading tables and operator idle times, is 
minimized. With the use of a job placement algorithm, a sequence of fabric- 
cutting jobs is assigned to different spreading tables and the production makespan 
is accordingly calculated. The fi tness on production makespan of the corresponding 
individual chromosome is defi ned as

    [7.5]  

 where  T   makespan  ( σ ) is the production makespan for sequence  σ ,  T   target   is the target 
completion time, and  w   T   is the weight of production makespan fi tness. With 
reference to Eq. 7.5, a sequence with smaller makespan time results in larger 
makespan fi tness. 

 Let  Π  denote the set of all feasible sequences. For a given sequence  σ ε Π , the 
overall fi tness is defi ned as

    [7.6]  

 where  Φ   JIT  ( σ ), and  Φ   makespan  ( σ ) are the fi tnesses for degree of satisfaction and 
production makespan, respectively. It is important to note that genetic optimization 
methodology can be applied for multi- objective optimization by defi ning the 
fi tness function accordingly. For example, Wong  et al.  (2005) minimized the 
makespan while maximizing the cut- pieces fulfi llment rates using GAs.  

   7.3.3  Genetic procedures 

 To optimize a fuzzy fabric- cutting schedule by GAs, the operation procedure 
begins by randomly generating an initial population of integer strings in which 
each string represents a job processing sequence, as shown in Fig. 7.4. Evolution 

   7.5     Degree of satisfaction evaluation.     
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is caused to occur in this population of strings in accordance with the genetic 
operations of crossover, mutation and selection. Applying genetic operations to 
the chromosome may cause lost features in some genes and result in infeasible 
solutions. In order to prevent such infeasible solutions in the job sequencing 
problem, uniform order- based crossover (see Fig. 7.6) and inversion mutation 
(see Fig. 7.7) are adopted. In the case of selection operation, standard biased 
roulette wheel selection with elitism (Goldberg, 1989; De Jong 1975) is employed. 
In the evolutionary process, the Darwinian fi tness of each chromosome is 
evaluated by substituting into Eq. [7.7]. This evolutionary process is allowed to 
continue until no signifi cant further improvement is obtained in the fi tness of the 
fi ttest string. This fi ttest string thus provides the optimal job processing sequence 
for the given batch of fabric- cutting jobs. Figure 7.8 outlines the general 
methodology proposed in this investigation.   

   7.6     Uniform order- based crossover.     

   7.7     Inversion mutation.     
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   7.4  Case studies using real production data 

 Two sets of real production data, denoted as cases A and B, are used to demonstrate 
the proposed method. All the data listed in Table 7.1 were obtained from the 

   7.8     Methodology outline.     
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fabric- cutting department of a Hong Kong owned apparel manufacturing company 
located in mainland China. These two- day spreading production schedules, in 
each of which 48 jobs were spread and cut by a manual cutting system, were 
recorded in the fabric- cutting department. The cutting department consists of four 
spreading tables, and the length of each one is 600 feet, as shown in Fig. 7.1. 

 The fuzzy due times of cases A and B are shown in Fig. 7.9 and 7.10. The 
genetic optimization procedure described in Section 7.3 is then used to optimize 
the production schedules. The schedules generated by GAs are maximized for the 
fi tness function (Eq. 7.6). In the case of complete satisfaction, the degree of 
satisfaction is 1 when the job is fi nished exactly within the required time window. 
For 48-job sequences, the overall degree of satisfaction,  Φ   JIT  , is a real number 
being not greater than 48 when there is unit degree of satisfaction weighting, that 
is  w   DS   =1. The target completion time (makespan) is T  target   = 1200 min; however, 
the value of  T   target  ⁄  T   makespan   is a real number less than 1 since overtime is foreseen 
(T  makespan   > T  target  ). The job sequence is optimized so that  T   target  ⁄  T   makespan   approaches 
1. The makespan weighting is set as 24 because management considers that the 

   7.9     Fuzzy due times of production order (Case A).     
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   7.10     Fuzzy due times of production order (Case B).     

   7.11     Matlab genetic optimization program.     
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customer satisfaction is twice as important as the production cost reduction 
(through idle time minimization). Therefore, the weights of fi tness function 
(Eq. 7.6) are  w   DS  =1 and  w   T  =24. 

 Figure 7.11 depicts the genetic optimization program developed using 
MATLAB in this research. The production schedules generated by GAs with 
population size of 200 chromosomes, crossover probability of 0.7, mutation 
probability of 0.03, and over 200 generations are compared with those based on 
industrial practice in Fig. 7.12 and 7.13. Part (a) of the fi gures shows the production 
schedules adopted by industrial practice, and the genetically optimized schedules 

   7.12     Case A. (a) Production schedule adopted by industrial practice. 
(b) Genetically optimized production schedule.     
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are shown in part (b). The evolutionary trajectory of cases A and B is shown in 
Fig. 7.14 and 7.15. In each of the production schedules, as shown in Fig. 7.12 and 
7.13, the upper Gantt chart shows the spreading operations while the lower Gantt 
chart shows the cutting operations. 

 The performance of the genetically optimized production schedules is compared 
with that of industrial practice in Table 7.2. It is evident that the proposed genetic 
optimization method is effective in improving the system performance in two 
aspects. First of all, genetically optimized schedules signifi cantly improve the 
overall degree of satisfaction, from 38.33 to 42.11 and from 41.99 to 45.53 in 

   7.13     Case B. (a) Production schedule adopted by industrial practice. 
(b) Genetically optimized production schedule.     
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   7.14     Genetic optimization performance of case A.     

    Table 7.2     Performance comparison of industrial practice and genetically 
optimized results  

  Φ   JIT     T   makespan     Φ   makespan     Φ   total   

 Ind (case A)  38.33  1237  23.28  61.61 
 GA (case A)  42.11  1236  23.30  65.41 
 Ind (case B)  41.99  1245  23.13  65.12 
 GA (case B)  45.53  1233  23.36  68.89 

 Note:   GA, genetically optimized; Ind, industrial practice.     

    Table 7.3     Makespan time comparison  

 Table 1  Table 2  Table 3  Table 4  Makespan 

 Ind (A)  1190  1188  1206  1237  1237 
 GA (A)  1236  1214  1171  1171  1236 
 Ind (B)  1164  1217  1245  1165  1245 
 GA (B)  1160  1227  1233  1170  1233 

  Note:  GA, genetically optimized; Ind, industrial practice.     
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cases A and B, respectively. On the other hand, the improvement of satisfaction 
does not prolong production makespan. Instead, slight improvement of 1 min and 
12 min was recorded when compared with industrial practice for the overall 
system makespan in cases A and B, respectively. Table 7.3 shows the detail of 
makespan time of different spreading tables with schedules adopted by industrial 
practice and those optimized genetically. In conclusion, the genetic optimization 
method generates production schedules which simultaneously improve the degree 
of satisfaction and production makespan.  

   7.5  Conclusions 

 In the apparel industry, production orders tend to split into smaller orders 
with different product features in response to growing requests for product 
customization. In order to shorten product time- to-market, apparel manufacturers 
work hard in the direction of just- in-time production. In the apparel manufacturing 
process, the effectiveness of fabric- cutting schedule planning extensively 
infl uences downstream assembly operations, and thus, in turn, is critical to the 
overall system performance. However, the demand from downstream operation 

   7.15     Genetic optimization performance of case B.     
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departments may be fuzzy and resource- competing. In this chapter, genetic 
algorithms and fuzzy set theory have been used to generate just- in-time schedules 
for the fabric- cutting process in order to satisfy the fuzzy and resource- competing 
requests from downstream operating units. Two sets of real production data have 
been collected to validate the proposed genetic optimization method. Experimental 
results have demonstrated that the genetically optimized schedules simultaneously 
improve the internal satisfaction of downstream operation departments and reduce 
production cost. 

 The apparel manufacturing environment is typically dynamic. Apart from the 
uncertainties caused by the fuzzy and resource- competing internal demands, job 
processing times are fuzzy due to human factors, machine breakdowns, insertion 
of rush orders, and so on (Mok  et al. , 2007). Research on the optimization of JIT 
schedules with fuzzy job processing time and production order due times is 
currently under investigation by the research team.  
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 7.8    Appendix: nomenclature 

 A summary of the nomenclature used in this chapter is as follows.

    n    number of jobs to be processed  
   J    { J  1  , J  2  , . . ., J   n  }, set of jobs (fabric lays  
   m    number of spreading tables in the fabric cutting department  
   M    { M  1 ,  M  2 , . . .,  M   m  }, set of spreading tables in the cutting department  
   p    number of production orders to be processed  
   Θ    { θ  1 ,  θ  2 , . . .,  θ   p  }, set of production orders (PO)  
   x ( θ ,  J   k  )    state value indicating whether or not job  J   k   belongs to production order  θ . 

 x ( θ ,  J   k  ) = 1 if job  J   k   belongs to production order  θ , and  x ( θ ,  J   k  ) = 0 
otherwise.  

   i    job setup (spreading) index and  i  =1, 2, . . .,  n .  
   j    job processing (cutting) index and  j  =1, 2, . . .  n .  
   σ   s     setup (spreading) sequence of jobs  
   σ   c     processing (cutting) sequence of jobs  
   χ ( J   k  )   quantity of apparel cut- pieces of job  J   k    
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   φ ( J   k  )   length of fabric lay of job  J   k    
   s(J   i   )    spreading time for job  J   i    
   c ( J   j  )   cutting time for job  J   j    
   C   k     completion time for job  J   k    
   Ã    fuzzy number A  
     D~     θ   i  

  ( t )   fuzzy due time of production order  θ   i  ,  i  =1, 2, . . .,  p                           
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   Abstract:    In apparel manufacturing, it is diffi cult to achieve line balance 
because the production rate of each workstation is different. This diffi culty 
is particularly prominent in a labour- intensive assembly process. The 
development of a line balancing technique using genetic algorithms is thus 
proposed for optimizing the assignment of operatives in an assembly line. The 
impact of different levels of skill inventory  SI   n   on the assembly makespan is 
also investigated in order to fi nd out the optimal number of task skills an 
operative should possess in the apparel assembly process. Experimental results 
will be discussed to demonstrate the performance of the proposed genetic 
optimization approach.  

   Key words:    genetic algorithms, optimization, line balance, apparel manufacture.   

    8.1  Introduction 

 In the apparel industry, the assembly process involves a set of workstations in 
which a specifi c task is processed in a pre- defi ned sequence. Before production, 
in order to achieve a balanced line, the sewing line supervisors assign one or more 
sewing operatives to each task based on the standard time required to complete 
the task. However, industrial experience shows that it is diffi cult to achieve a 
perfectly balanced line because the production rate of each workstation is different. 
Imbalance occurs due to various factors, including fl uctuation in operative 
effi ciency, frequent change of product style, order size, prior experience and some 
unexpected factors, such as absenteeism, machine breakdown, and so on. Line 
balancing control is required to smooth away the bottlenecks. 

 The line balancing problem is one of the most traditional problems which 
evolved from the concept of division of labour (Smith, 1776) and became popular 
because of Henry Ford’s famous ‘T-model’ (Ford  et al ., 1923). Despite its long 
history of development, line- balancing study is still an attractive research topic 
nowadays due to its relevancy to everyday industry manufacturing and the 
diversity in system confi gurations. Examples of detailed reviews on the topic have 
been provided by Ghosh and Gagnon (1989) and Erel and Sarin (1998). According 
to different system confi gurations, the assembly line can be classifi ed as a 
single- model line, a mixed- model line, or a multi- model line. A single- model line 
only assembles one product, while multiple products are assembled in either 
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mixed- or multi- model lines, but intermediate setup is required in the latter case. 
In addition to serial line assembly, fl exibility can be improved by the introduction 
of parallelism, including parallel lines, parallel stations, and parallel tasks (Becker 
and Scholl, 2003). Apparel assembly, a kind of parallel- station line balancing 
problem, will be discussed in subsequent sections of this chapter. 

 Diverse techniques have been used in the line balancing control problem over 
the years. Early research mainly applied optimization techniques of dynamic 
programming (Held  et al ., 1963, Kao, 1976, Schrage and Baker, 1978, Kao and 
Queyranne, 1982, Henig, 1986) and integer programming (Graves and Lamar, 
1983, Talbot and Patterson, 1984, Gökcen and Erel, 1998). The Branch and Bound 
algorithm is one of the heuristic techniques, which has the longest history of 
application in the line balancing problem (Deutsch, 1971, Johnson, 1983, Scholl 
and Klein, 1997). Other heuristic techniques such as simulated annealing 
(McMullen and Frazier, 1998, Erel  et al ., 2001), tabu search (Pastor  et al ., 2002), 
and graphical method (Dolgui  et al ., 2006) have also recently been applied in this 
attractive fi eld. The rise of artifi cial intelligence (AI) computational techniques in 
the early 1990s also promoted their application to line balancing control. Elizabeth 
awnd Roger (1994) reviewed the AI-based systems and concluded that the results 
of most real- life problems have not been realized due to technical problems in 
implementation and the ‘people problem’, particularly in the human- centric 
apparel manufacturing process. Among various methods known in the AI domain, 
genetic algorithm (Kim  et al ., 2000, 2000a; Dolgui  et al ., 2002) is the most 
frequently adopted in line balancing control optimization. 

 However, in sewing assembly, workstations are tailored for specifi c tasks and 
are usually statically confi gured. Such constraints have hindered the direct 
application of line balancing research results obtained so far. In fact, the current 
solution to balancing sewing assembly lines relies heavily on the shop- fl oor 
expert’s knowledge, experience and intuition. Experts’ decisions may not be 
consistent under similar conditions and may thus be non- optimal. Small order 
sizes and frequent changes of style make optimal production control more diffi cult 
to achieve. In the 1990s, simulation technique was widely adopted by researchers 
to provide a scientifi c solution to control line balancing in apparel manufacture. 
Rosser  et al . (1991) proposed a discrete event simulation model for manufacturing 
trousers, in which material fl ows and the problems resulting from the absence of 
supervision were considered. Oliver  et al . (1994) developed a simulation system 
to solve the line balancing problem of an apparel bundle system. Fozzard  et al . 
(1996) constructed an interactive simulation system using a multi- paradigm 
model with a knowledge- based approach to control the line balance of an apparel 
assembly line. Rotab (1999) developed a spreadsheet simulation model for a 
garment production system to minimize the average daily production cost, in 
which the minimum production cost for a suitable combination of repair men and 
backup machines could be identifi ed. Emphasis has been put on the fl ow- charting 
process so as to simulate the effi ciency using case- based reasoning technique. The 
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above research projects were carried out under conditions of a steady- state 
manufacturing environment and discrete events, which may be unrealistic in 
practice. These constraints highlight the need for further study on effective 
algorithms to provide systematically an optimal solution to the problem of 
production control in the apparel assembly process. 

 The introduction of the Unit Production Hanger System (UPS), which is 
capable of automatically delivering a piece of cloth to a target workstation 
according to a planned workfl ow schedule, makes sewing operation confi guration 
more fl exible. A sewing assembly line equipped with UPS is similar to the 
traditional parallel stations system. It is essential to develop a ‘smart’ balancing 
solution for UPS sewing lines in order to take full advantage of its system 
fl exibility. In addition, training the sewing operatives for multi- task handling is 
the approach of apparel manufacturers, such that a pool of multi- skilled operatives 
can be a better option for task reassignment in order to achieve a better line 
balancing result. However, few studies have ever been conducted to investigate 
the effect of skill inventory on operation effi ciency in sewing assembly. Skill 
inventory  SI   n   represents the number of task skills each operator should have in the 
apparel assembly process. The objectives of this study are thus to search online 
optimal operative assignments in order to minimize the makespan using genetic 
algorithms (GA) and to compare the performance of different levels of skill 
inventory  SI   n   on the assembly makespan so as to search the optimal number of 
task skills an operator should possess in the apparel assembly process.  

   8.2  Problem formulation in sewing operations 

 In the apparel industry, sewing operators are usually trained to be multi- skilled. In 
other words, each operator is trained to master the skills of a set of tasks in which 
the operator’s effi ciency in completing the corresponding tasks depends on his/
her skill level and previous experience. In this study, task set  T   k   and effi ciency set 
 E   k   are determined by the skill inventory  SI   n  . In the example in  Table 8.1 , 14 
operators are responsible for a production order composed of 6 tasks. The task set 
and effi ciency set for operator  k  = 6 are  T  6  = {3, 4, 2, 5} and  E  6  = {100%, 95%, 
90%, 85%} when  SI   n  = 4. Since operators are cross- trained with multi- skills, the 
operator may not achieve 100% effi ciency at every task; therefore the actual task 
processing times vary among operators. For example, when operator  k  processes 
a task he/she is good at,  α ( k ) = 1, he/she can achieve 100% effi ciency ( e  α   (k)   = 100%) 
and the task processing time is the same as the task standard time,  PT   j   =  ST   j  . When 
operator  k  is processing his/her less competent task, 1< α ( k ) ≤  SI   n  , he/she can only 
achieve a lower effi ciency,  e  α   (k)  <100%. As a result, the task processing time is 
longer than the task standard time,  PT   j  > ST   j  . The processing time for task  j  by 
operator  k  can be calculated by

  PT   j∈  T   k  
  =  ST   j   / e  α  ( k ) . [8.1]  
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    8.3  Genetic optimization of production line balancing 

 In this chapter, genetic algorithms (GA) are used to optimize the operative 
assignment so that line balancing can be achieved through the minimization of 
overall operative idle time. The proposed method readjusts the operative 
assignment continuously, after every fi xed time interval, according to the most 
updated system status in order to smooth out the bottlenecks in the assembly line. 
Eventually the overall production order completion time can be shortened by 
minimizing the operative idle time. This section is thus dedicated to describing 
the general genetic optimization methodology. 

 GA is a computational algorithm developed to mimic some of the processes 
observed in natural selection in the 1960s–1970s. GA is a metaheuristic for 
solving combinatorial optimization problems. In solving an optimization problem 
by GA, it is usually assumed that a potential solution to the problem may be 
represented as a set of variables. These variables (‘genes’) are joined together to 
form a string of values (‘chromosome’). A fi tness function is then defi ned to 
measure the relative merit of each string in solving the particular optimization 
problem. In genetic evolution, an initial population of chromosomes can be set by 

    Table 8.1     Operator’s skill level (trained task with estimated effi ciency in 
parenthesis  j  ( e )) for different level of skill inventory  

 Skill level   α ( k )=1   α ( k )=2   α ( k )=3   α ( k )=4   α ( k )=5   α ( k )=6 

 operator  k  

  1  1 (100%)  2 (95%)  3 (90%)  4 (85%)  5 (85%)  6 (85%) 
  2  1 (100%)  2 (95%)  6 (90%)  5 (85%)  3 (85%)  4 (85%) 
  3  2 (100%)  1 (95%)  3 (90%)  4 (85%)  5 (85%)  6 (85%) 
  4  2 (100%)  1 (95%)  6 (90%)  5 (85%)  4 (85%)  3 (85%) 
  5  3 (100%)  4 (95%)  1 (90%)  6 (85%)  2 (85%)  5 (85%) 
  6  3 (100%)  4 (95%)  2 (90%)  5 (85%)  6 (85%)  1 (85%) 
  7  4 (100%)  3 (95%)  5 (90%)  6 (85%)  1 (85%)  2 (85%) 
  8  4 (100%)  3 (95%)  5 (90%)  6 (85%)  1 (85%)  2 (85%) 
  9  5 (100%)  4 (95%)  1 (90%)  2 (85%)  6 (85%)  3 (85%) 
 10  5 (100%)  6 (95%)  1 (90%)  2 (85%)  3 (85%)  4 (85%) 
 11  5 (100%)  6 (95%)  2 (90%)  1 (85%)  4 (85%)  3 (85%) 
 12  6 (100%)  3 (95%)  2 (90%)  1 (85%)  4 (85%)  5 (85%) 
 13  6 (100%)  5 (95%)  4 (90%)  3 (85%)  1 (85%)  2 (85%) 
 14  6 (100%)  5 (95%)  4 (90%)  3 (85%)  2 (85%)  1 (85%) 

 S
ki

ll 
in

ve
n

to
ry

  ↑  SI   n   =1 ↑ 
 ↑ . . . . SI   n   =2 . . . .↑ 
 ↑ . . . . . . . . .  SI   n   =3 . . . . . . . . . ↑ 
 ↑ . . . . . . . . . . . . . .  SI   n   =4 . . . . . . . . . . . . . . ↑ 
 ↑ . . . . . . . . . . . . . . . . . . . .  SI   n   =5 . . . . . . . . . . . . . . . . . . . . ↑ 
 ↑ . . . . . . . .. . . . . . . . . . . . . . . . . ..  SI   n   =6 . . . . . . . .. . . . . . . . . . . . . . . . . . ↑ 
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random initialization or heuristic method. Genetic variation is brought into the 
current population by the application of two genetic operators: crossover and 
mutation. Chromosomes are then selected as survivors of the next generation, and 
this selection is made in such a manner that fi tter individuals have a higher 
tendency to be selected. The evolution process is continued such that the quality 
of the individual solutions improves in successive populations. In this way, GA 
can move to a successful outcome without the need to examine every possible 
solution to the problem in a drastically short time. The general procedure of GA is 
illustrated by the fl ow diagram in  Fig. 8.1 . The distinctive GA features employed 
in this line balancing optimization problem are described in detail in the following 
sub- sections. 

   8.3.1  Chromosome syntax 

 Although the binary representation proposed by Holland (1975) is the most widely 
accepted representation, solution strings are not restricted to binary in GA. Eiben 
and Smith (2003) commented that integer and real number strings are commonly 
used in various optimization studies. The choice of representation in GA is related 
to the nature of the problem. In the line balancing optimization problem, each 
operator possesses limited skills, which implies that each operator is only capable 
of handling limited tasks. For example,  SI   n  = 2 implies that each operator is trained 
to master the skill of two tasks. In this chapter, integer chromosome representation 
is used. In an integer string, each gene represents the skill level,  α   i  ( k ),  k   =1, 2, . . ., 
 n , of each operator’s current task, and the length of the chromosome is the number 
of operators. Therefore, the whole gene- code, which concatenates all operators’ 
task skills, is represented as

  α   h  = [ α   h  (1)  α   h  (2) . . .  α   h  ( o )], [8.2]  

 where  h  = 1, 2, . . .,  μ  (population size). Each operator’s current task skill level, 
 α   h  ( k ), is not unconstrained, and must be within a range from 1 to  SI   n  , i.e. 1 ≤  α   i   ( k ) 
≤  SI , ∀  α   i  ( k ) ∈ ℵ. 

 For example, fi ve operators ( n  = 5) are required to complete a production 
order. When skill inventory is 3,  SI   n  = 3, chromosome  α  = [2 1 3 1 1] implies 
that operator 1 should process her second skilled task, operator 3 should process 
her third skilled task, and operators 2, 4 and 5 should process their fi rst skilled 
tasks, respectively. Once skill levels,  α , are defi ned, the operators’ responsible 
tasks and the corresponding operation effi ciency are obtained from the pre- 
defi ned lookup table provided by the operative training department, as shown in 
 Table 8.1 .  
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   8.1     Flow diagram of genetic algorithms (GA).     
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   8.3.2  Initial population 

 Initial population is generated randomly in this study. The initialization process is 
detailed as follows.

   •    Step 1 . Initialize parameters: index  h  = 1, population size  μ  and population 
 P  = {Ø}.  

  •    Step 2 . Randomly produce an integer- number string,  α   h   = [ α   h  (1)  α   h  (2) . . .  α   h  ( k ) 
. . .  α   h  ( o )], where  α   h  ( k ) is the skill level of operator  k , and 1≤  α   h  ( k ) ≤   SI ,  α   h  ( k )∈ℵ.  

  •    Step 3 . If  α   i   is feasible, go to step 4, else go to step 2.  
  •    Step 4 . If  h   =   μ  −1, then  P  = { α  1 ,  α  2 , . . .,  α  μ   −  1  } is the initial population and 

stop; else go to step 2.  
  •    Step 5 . Set  α  μ  = skill levels of theoretical operative assignment (which is 

calculated based on the standard time of different tasks; see Section 8.4 for an 
example),  P  = { α  1 ,  α  2 , . . .,  α  μ    − 1  ,  α  μ }.    

 In step 5 of the above procedure, the theoretical operative assignment is maintained 
in the initial population in order to speed up the optimization process. In the line 
balancing problem, the feasibility of each individual operative assignment is 
subject to various constraints. In the above routine, an individual is defi ned as a 
feasible solution in step 3 only when the following constraints are satisfi ed. 

 For  α   h   = [ α   h  (1)  α   h  (2) . . .  α   h  ( o )] ∈P, 
 if

  N  t  ⊆  T  α    h    [8.3]  

 then  α   h   = [ α   h  (1)  α   h  (2) . . .  α   h  ( o )] is feasible, else  α   h   = [ α   h  (1)  α   h  (2) . . .  α   h  ( o )] is not 
feasible. In Eq. 8.3,  N   t   is the set of tasks that have not been completed at time  t  for 
the current production order, ∀ N   t   ⊆  N .  T  α   h   is the task set of all operators with their 
current skill level setting,  α   h   = [ α   h  (1)  α   h  (2) . . .  α   h  ( o )]. If constraint (3) is not 
satisfi ed, it implies that  α   h   = [ α   h  (1)  α   h  (2) . . .  α   h  ( o )] could never complete the 
production order, since there are some tasks in  N   t   that are not being processed by 
any of the operators in set  O . In addition, the total number of workstations 
employed for each task  j  (   j ∈  T  α   h  ) of the current skill setting,  α   h  , must not exceed 
the available workstations for the corresponding task  j , i.e.

   . [8.4]   

   8.3.3  Fitness function 

 In GA, fi tness function is defi ned to measure the fi tness of each individual 
chromosome so as to determine which will reproduce and survive into the next 
generation. Thus, given a particular chromosome, the fi tness function returns a single 
numerical score, ‘fi tness’, which is proportional to the ‘ability’ of the individual that 
the chromosome represents. The ‘fi tness’ score assigned to each individual in the 
population depends on how well that individual solves a specifi c problem. In this line 
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balancing optimization problem, minimizing operative idle time, which is equivalent 
to makespan minimization, would be the prime objective. Let  P  denote the set of 
feasible solutions. For a given sequence  α  ∈  P , fi tness  Φ ( α ) can be defi ned as

    
[8.5]

  

 where fi tness  Φ ( α ) decreases as the makespan,  T   makespan  ( α ), increases. In Eq. 8.5, 
 T   target   is the target makespan. In GA, genetic operators such as crossover and 
mutation are responsible for bringing genetic variation into the population. 
However, applying such genetic operators may cause lost features in some genes 
and result in infeasible solutions. In the case when an infeasible solution results, 
that is, a solution that does not satisfy Eq. 8.3 and 8.4, the solution fi tness is 
zero, i.e.

  Φ ( α ) = 0. [8.6]   

   8.3.4  Genetic operators 

 In GA, crossover and mutation are the two major genetic operators to provide 
genetic variations to the population by bringing in chromosomal changes. 
Crossover, as the name implies, exchanges information (‘genes’) among 
chromosomes. Mutation randomly alters some genes in chromosomes. In this 
chapter, traditional single point crossover (Holland, 1975), which is a powerful 
algorithm for both binary and integer chromosomes, is employed. 

  Single point crossover 

 Single point crossover follows the procedures below.

   •    Step 1 . Randomly select two parents for mating from the population.  
  •    Step 2 . Generate a random integer within a range of [0,  l −1] ( l  is the length of 

the chromosome).  
  •    Step 3 . Split both parents at this point, thus producing two ‘head’ segments 

and two ‘tail’ segments.  
  •    Step 4 . The tail segments are then swapped over to produce two new full- 

length chromosomes.    

 The two offspring each inherit some genes from each parent from this single point 
crossover.  Figure 8.2  shows a single point crossover that occurs after the third bits 
of two ten- bit parental chromosomes. 

 Crossover is not usually applied to all pairs of individuals selected for mating. 
Indeed, the crossover task is a random process with an application likelihood, 
which is called the probability of crossover: a typical probability of crossover is 
between 0.6 and 1.0.  
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  Random resetting mutation 

 In GA, mutation is another genetic operator that is applied to each offspring. 
Compared with crossover, mutation is only seen as a ‘background’ operator in 
GA. However, research has shown that, though mutation is of a generally low 
probability of use (typical value is between 0.0015 and 0.03), it is still a very 
important operator, as it becomes more productive, and crossover becomes less 
productive, when the population converges (Bäck  et al ., 1997). In this line 
balancing optimization problem, random resetting mutation is used. Under 
random resetting mutation, with some small probability a new gene value is 
chosen at random from the set of permissible values in each position. Thus, for 
example,  Fig. 8.3  shows an illustration in which the third gene is mutated such 
that a new gene value 1 replaces the original gene value 3.   

   8.3.5  Parent selection 

 In nature, different individuals compete for resources in the environment. Some are 
better than others. Those that are better are more likely to survive and propagate their 
genetic material. This process of natural selection is mimicked in GA by selection 

   8.2     Single point crossover.     

   8.3     Random resetting mutation.     
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schemes in which parental chromosomes of high fi tness have a greater chance than 
those of low fi tness of producing offspring. One of the most widely used selection 
schemes is called the ‘biased roulette wheel scheme’, in which each current string in 
the population has a roulette wheel slot sized in proportion to its fi tness (Goldberg, 
1989). The biased roulette wheel scheme can be described as follows:

   •    Step 1 . Sum the fi tness of all the population members; call the result total 
fi tness,  Φ  total = ΣΦ .  

  •    Step 2 . Generate a random number,  θ , between zero and total fi tness,  θ  ∈[0  Φ  total ].  
  •    Step 3 . Return the fi rst population member whose fi tness, added to the fi tness 

of the preceding population members, is greater than or equal to  θ .  
  •    Step 4 . Repeat steps 2 to 3, until  μ  strings are selected from the parent pool.    

 In roulette wheel selection, the chance of a parent being selected is directly 
proportional to its fi tness. In the example in  Fig. 8.4 , from a population of 10 
chromosomes with a set of fi tness evaluations totalling 80, 6 individuals are 
selected by the biased roulette wheel scheme, according to 6 random numbers 
generated from the interval of 0 and 80.  

   8.3.6  Elitism 

 Since the biased roulette wheel selection processes are based on the survival of 
the fi ttest and are random processes, there is no guarantee that some fi t individuals 
will be selected. In order to improve the selection mechanism, De Jong (1975) 
proposed elitism in this job sequencing problem. Elitism is an addition to many 
selection methods that forces the GA to retain some of the best individuals in each 
generation. This elitist strategy copies the best individuals of each generation 
directly into the succeeding generation. Such individuals might otherwise be lost 
if they are not selected to reproduce, or if they are destroyed by crossover or 

   8.4     Biased roulette- wheel selection scheme.     

�� �� �� �� ��



 Optimizing apparel production systems 163

©  Woodhead Publishing Limited, 2013

mutation. This elitist strategy can increase the speed of domination of populations 
by the best individuals and provide an improvement of the GA’s performance.  

   8.3.7  Evolution and termination criteria 

 After initialization, evolution occurs in accordance with the standard genetic 
operations of crossover, mutation and selection. The evolutionary process is 
allowed to continue until no signifi cant further increase is obtained in the fi tness 
of the fi ttest string or the defi ned maximum number of generations is reached. 
Thus, the fi ttest string generates the operative assignment which can fi nish the 
current production order with the minimized operative idle time and assembly 
makespan. The described genetic optimization procedure is repeated every fi xed 
time interval so as to readjust the operative assignment according to system status. 
Such online rescheduling by GA is used to minimize the assembly makespan.   

   8.4  Experimental results 

 A case study about a Hong Kong- based high- priced shirt manufacturer is used to 
demonstrate the genetic line balancing optimization procedure. This manufacturer 
has one plant in China for component sewing (collar and cuffs) and the other in 
Hong Kong for six assembly processes (join shoulder, set sleeve, topstitch sleeve, 
join side- seam, set cuff and set collar). In this example, a production order with 
3600 garments is to be assembled in the Hong Kong plant. The assembly process 
of each garment consists of the above mentioned six operation tasks,  N  = {1 2 3 4 
5 6}, and each task description with standard time is given in  Table 8.2 . Fourteen 
operators in total are assigned to complete this production order. Based on the 
standard time of each operation, theoretical numbers of operators for each 
operation can be calculated and actual numbers of operators can be assigned. The 
operators’ skill levels with the trained tasks and achievable effi ciency are shown 
in  Table 8.1 , while the fl ow diagram of the assembly process is shown in  Fig. 8.5 . 

    Table 8.2     Operation breakdown  

 Task  j   Task description  Standard 
time 
 STj  (s) 

 Theoretical 
no. of 
operator 
assignment 

 Actual 
no. of 
operators 
assigned 

 Theoretical 
operative 
assignment  k  

 1  Join shoulder   25  1.54   2  1, 2 
 2  Set sleeve   36  2.21   2  3, 4 
 3  Topstitch sleeve   30  1.84   2  5, 6 
 4  Join side- seam   38  2.33   2  7, 8 
 5  Set cuff   45  2.70   3  9, 10, 11 
 6  Set collar   54  3.32   3  12, 13, 14 

 Total cycle time  228  13.94  14 
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    Table 8.3     Mean makespan value of genetically optimized operative assignment 
with different level of skill inventories  SI   n    

 Skill inventory  SI   n    1  2  3  4  5  6 

 Makespan  T   makespan    68 606  68 244  65 086  66 094  66 700  65 829 
 Fitness improvement  –  0.527%  5.131%  3.662%  2.779%  4.047% 

 This line balancing optimization problem has the following assumptions:

   •   Learning curve effect is not considered after shifting to another operation.  
  •   The assembly system used for modelling is empty initially; in other words, 

there is no work in progress in each workstation.  
  •   Number of workstations for each operation task is always suffi cient.    

 In this study, the aim is to investigate whether genetic optimized operative 
assignment can reduce the apparel assembly makespan when compared with 
theoretical operator assignment. It is also intended to compare the performance of 
different levels of skill inventory,  SI   n  , on the makespan in order to determine the 
optimal number of task skills an operator should have in the assembly process. 
The proposed method is applied to adjust the operative assignment hourly so that 
the assembly makespan,  T   makespan  , is minimized. Each operative assignment is 
optimized by GA hourly with the following settings:

   •   Population size  μ  = 10  
  •   Maximum number of generations = 20  
  •   Crossover probability = 0.7  
  •   Mutation probability = 0.03    

  Figure 8.6  shows four sets of results (each with different seed number), in which 
the makespan of genetically optimized operative assignment based on different 
skill inventories,  SI   n  , is compared. The mean makespan of those four runs and the 
corresponding performance improvement are listed in  Table 8.3 . The target 
makespan,  T   target  , in Eq. 8.5 is set at 68 606 s, based on the theoretical operative 
assignment calculation in every genetic optimization. An example of genetic 

   8.5     Flow diagram of an apparel assembly process.     
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   8.6     Makespan vs. skill inventory.     

   8.7     Genetic optimization performance of a particular run (seed 4) when 
optimization was based on system status at  t  = 50 400 s.     

optimization performance is shown in  Fig. 8.7  for a particular simulation run 
when  SI   n   = 3 and for which the optimization was based on the system status at 
time  t  = 50 400 s. Genetic optimization procedure can improve the assembly 
makespan, since all makespans of genetically optimized results are lower than 
those of the theoretical operative assignment, as shown in both  Fig. 8.6  and 
 Table 8.3 . It is also indicated that skill inventory,  SI   n   = 3, generates the shortest 
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assembly makespan among all other skill inventories. In other words, operators 
mastering the skills of more than three tasks could not improve the system 
performance. Therefore, the optimal number of task skills each operator should 
have in the apparel assembly process is three.  Table 8.4  lists the detail of genetically 
optimized operative assignments at different time intervals of a particular run 
when  SI  n  = 3.  

   8.5  Conclusions 

 In this chapter, genetic algorithms (GA) are used to optimize the operative 
assignment so that overall operative idle time and thus makespan can be 
minimized. The proposed method readjusts the operative assignment at fi xed time 
intervals according to the most updated system status. The makespan of operative 
assignment based on different skill inventories,  SI   n  , is also compared, in which 
skill inventory  SI   n   = 3 generates the shortest assembly makespan. It has been 
shown that genetic optimization procedure can improve the assembly makespan, 
since all makespans of genetically optimized results are lower than those of the 
static theoretical operative assignment. It can also be concluded that the optimal 
number of operation skills each operative should have is three. The implication 
for the apparel manufacturers is that more resources put into training the sewing 

    Table 8.4     Optimal operative assignment when  SI   n   = 3  

 Optimal responsible 

 Task  j  

  Operator   k  

 Time range  1  2  3  4  5  6  7  8  9  10  11  12  13  14 

  t  = 0 → 3600  1  1  2  2  3  3  4  4  5  5  5  6  6  6 
  t  = 3600 → 7200  1  1  2  2  3  3  4  4  5  5  5  6  6  6 
  t  = 7200 → 10 800  1  1  2  2  3  3  4  4  5  5  5  6  6  6 
  t  = 10 800 → 14 400  1  1  2  2  3  3  4  4  5  5  5  6  6  6 
  t  = 14 400 → 18 000  1  1  2  2  3  3  4  4  5  5  5  6  6  6 
  t  = 18 000 → 21 600  1  1  2  2  3  3  4  4  5  5  5  6  6  6 
  t  = 21 600 → 25 200  1  1  2  2  3  3  4  4  5  5  5  6  6  6 
  t  = 25 200 → 28 800  1  1  2  2  3  3  4  4  5  5  5  6  6  6 
  t  = 28 800 → 32 400  1  1  2  2  3  3  4  4  5  5  5  6  6  6 
  t  = 32 400 → 36 000  1  1  2  2  3  3  4  4  5  5  5  6  6  6 
  t  = 36 000 → 39 600  1  6  2  2  3  3  4  4  5  5  5  6  6  4 
  t  = 39 600 → 43 200  1  6  2  2  3  3  4  4  5  5  5  6  6  6 
  t  = 43 200 → 46 800  1  6  2  2  3  3  4  4  5  5  5  6  6  4 
  t  = 46 800 → 50 400  1  6  2  2  3  3  4  4  5  5  5  6  6  6 
  t  = 50 400 → 54 000  3  6  2  1  3  2  4  4  5  5  5  6  6  4 
  t  = 54 000 → 57 600  3  6  2  1  3  2  4  4  5  5  5  6  6  4 
  t  = 57 600 → 61 200  3  6  2  2  3  2  4  4  5  5  5  6  6  4 
  t  = 61 200 → 64 800  3  6  2  2  1  3  4  4  5  5  5  6  6  6 
  t  = 64 800 and thereafter  3  6  2  6  3  3  4  4  5  5  5  2  6  6 
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operatives to handle more than three operations cannot further improve the line 
balance and makespan of the apparel assembly process. Operative effi ciency, 
complexity of fashion style, operational sequence and unexpected factors, 
including rush orders, machine breakdown, and so on, in a dynamic manufacturing 
environment having an impact on the planned operative assignment and the 
performance of the assembly line are now under investigation by the project team.  

   8.6  Acknowledgement 

 The authors would like to thank Earmarked Research Grant of Research Grants 
Council of Hong Kong and The Hong Kong Polytechnic University for fi nancial 
support of this research project (Project A/C Code: B-Q730).   

    8.7  References 

  Bäck, T., Fogel, D.B. and Michalewicz, Z., 1997.  Handbook of Evolutionary Computation , 
Oxford University Press, New York, and Institute of Physics Publishing, Bristol.  

  Becker, C. and Scholl, A., 2003. A survey on problems and methods in generalized 
assembly line balancing,  European Journal of Operational Research , 168(3), 694–715.  

  De Jong, K.A., 1975.  An Analysis of the Behavior of a Class of Genetic Adaptive Systems , 
Doctoral dissertation, University of Michigan, Ann Arbor, MI (University Microfi lms 
No. 76-9381).  

  Deutsch, D.F., 1971.  A Branch and Bound Technique for Mixed-Product Assembly Line 
Balancing , PhD dissertation, Arizona State University.  

  Dolgui, A., Ereemev, A., Kolokolov, A. and Sigaev, V., 2002. A genetic algorithm for 
allocation of buffer storage capacities in production line with unreliable machines, 
 Journal of Mathematical Modelling and Algorithms , 1, 89–104.  

  Dolgui, A., Guschinsky, N. and Levin, G., 2006. A special case of transfer lines balancing 
by graph approach,  European Journal of Operational Research , 168, 732–746.  

  Eiben, A.E. and Smith, J.E., 2003.  Introduction to Evolutionary Computing , Springer, Berlin.  
  Elizabeth, S. and Roger, M.K., 1994. Knowledge- based reactive scheduling,  Production 

Planning and Control , 5(2), 124–145.  
  Erel, E. and Sarin, S.C., 1998. A survey of the assembly line balancing procedures, 

 Production Planning and Control , 9, 414–434.  
  Erel, E., Sabuncuoglu, I. and Aksu, B.A., 2001. Balancing of U-type assembly systems using 

simulated annealing,  International Journal of Production Research , 39, 3003–3015.  
  Ford, H., 1923.  Mein Leben und Werk , 27th Edition, Paul List Verlag, Leipzig.  
  Fozzard, G., Spragg, J. and Tyler, D., 1996. Simulation of a fl ow lines in clothing 

manufacturing Part 1: Model Construction,  International Journal of Clothing Science 
and Technology , 8(4), 17–27.  

  Ghosh, S. and Gagnon, R.J., 1989. A comprehensive literature review and analysis of the 
design, balancing and scheduling of assembly systems,  International Journal of 
Production Research , 27, 637–670.  

  Gökcen, H. and Erel, E., 1998. Binary integer formulation for mixed- model assembly line 
balancing problem,  Computers and Industrial Engineering , 34, 451–461.  

  Goldberg, D.E., 1989.  Genetic Algorithms in Search, Optimisation, and Machine Learning , 
Addison-Wesley, Reading, Massachusetts.  

�� �� �� �� ��



168 Optimizing decision making

©  Woodhead Publishing Limited, 2013

  Graves, S.C. and Lamar, B.W., 1983. An integer programming procedure for assembly 
system design problems,  Operations Research , 31, 522–545.  

  Held, M., Karp, R.M. and Shareshian, R., 1963. Assembly line balancing – Dynamic 
programming with precedence constraints,  Operations Research , 11, 442–459.  

  Henig, M.I., 1986. Extensions of the dynamic programming method in the deterministic 
and stochastic assembly line balancing problems,  Computers and Operations Research , 
13, 443–449.  

  Holland, J.H., 1975.  Adaptation in Natural and Artifi cial Systems , The University of 
Michigan Press, Ann Arbor, Michigan.  

  Johnson, N.V., 1983. A branch and bound algorithm for assembly line balancing problems 
with formulations irregularities,  Management Science , 29(11), 1309–1324.  

  Kao, E.P.C., 1976. A preference order dynamic program for stochastic assembly line 
balancing,  Management Science , 22, 1097–1104.  

  Kao, E.P.C. and Queyranne, M., 1982. On dynamic programming methods for assembly 
line balancing,  Operations Research , 30, 375–390.  

  Kim, Y.K., Kim, Y. and Kim, J.Y., 2000. Two- sided assembly line balancing: a genetic 
algorithm approach,  Production Planning and Control , 11, 44–53.  

  Kim, Y.K., Kim, J.Y. and Kim, Y., 2000a. A coevolutionary algorithm for balancing and 
sequencing in mixed model assembly lines,  Applied Intelligence , 13, 247–258.  

  McMullen, P.R. and Frazier, G.V., 1998. Using simulated annealing to solve a multiobjective 
assembly line balancing problem with parallel workstations,  International Journal of 
Production Research , 36, 2717–2741.  

  Oliver, B.A., Kincade, D.H. and Albrecht, D., 1994. Comparison of apparel production 
systems: a simulation,  Clothing and Textiles Research Journal , 12(4), 45–50.  

  Pastor, R., Andres, C., Duran, A. and Perez, M., 2002. Tabu search algorithms for an industrial 
multi- product and multi- objective assembly line balancing problem with reduction of the 
task dispersion,  Journal of the Operational Research Society , 53, 1317–1323.  

  Rosser, P.S., Sommerfi eld, J.T. and Tincher, W.C., 1991. Discrete- event simulation of 
trousers manufacturing,  International Journal of Clothing Science and Technology , 
3(2), 18–31.  

  Rotab, M.R.K., 1999. Simulation modeling of a garment production system using a 
spreadsheet to minimize production cost,  International Journal of Clothing Science and 
Technology , 11(5), 287–299.  

  Scholl, A. and Klein, R., 1997. SALOME: A bidirectional branch and bound procedure for 
assembly line balancing,  INFORMS Journal on Computing , 9, 319–334.  

  Schrage, L. and Baker, K.R., 1978. Dynamic programming solution of sequencing 
problems with precedence constraints,  Operations Research , 26, 444–449.  

  Smith, A., 1776.  An Inquiry into the Nature and Causes of the Wealth of Nations , 1st 
Edition, in  The Glasgow Edition of the Works and Correspondence of Adam Smith , 
edited by R.H. Campbell, A.S. Skinner and W.B. Todd, Vol. II, Oxford University Press, 
Oxford.  

  Talbot, F.B. and Patterson, J., 1984. An integer programming algorithm with network cut 
for solving the assembly line balancing problem,  Management Science , 30(1), 85–99.   

   8.8   Appendix: nomenclature  

 The following notation is utilized to search for optimal operative assignment for 
the apparel assembly process.

�� �� �� �� ��



 Optimizing apparel production systems 169

©  Woodhead Publishing Limited, 2013

    M  set of workstations { 1, 2 , . . .,  m }  
   N  set of tasks { 1, 2 , . . .,  n }  
   O  set of operators { 1, 2 , . . .,  o }  
   S   j   set of workstations that are able to handle task  j ,  S   j   ⊆  M (  j  = 1, 2, . . .,  n )  
  | S   j  | total number of workstations at which task  j  can be processed  

   x   ij   workstation state variable.     

   SI   n   skill inventory, which represents the number of tasks which each operator 
can handle  

   α ( k ) task skill level of operator k  ( k   =1, 2, . . .,  o )  
   T   k    { j :  α  (k) ∈[1  SI   n  ]} set of tasks which can be carried out by operator  k   
   E   k   { e :  α  (k) ∈[1  SI   n  ]} set of effi ciency which operator  k  achieves for handling 

different tasks in  T   k    
   ST   j   standard time of task  j , which is the time to complete task  j  with 100% 

operator effi ciency  
   PT   j ∈ T   k    processing time of task  j  by operator  k                    
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   Abstract:    A hybrid intelligent (HI) model, comprising a data pre- processing 
component and a HI forecaster, is developed to tackle the medium- term fashion 
sales forecasting problem. The HI forecaster adopts a novel learning algorithm- 
based neural network to generate initial sales forecasts and then uses a heuristic 
fi ne- tuning process to obtain more accurate forecasts. The learning algorithm 
integrates an improved harmony search algorithm and an extreme learning 
machine. Experiments based on real fashion retail data and public benchmark 
data sets were conducted to evaluate the performance of the proposed model. 
Results demonstrate that the performance is far superior to traditional 
autoregressive integrated moving average (ARIMA) models and two recently 
developed neural network models.  

   Key words:    fashion sales forecasting, harmony search, neural network, 
extreme learning machine.   

    9.1  Introduction 

 Sales forecasting is the foundation for planning various phases of a fi rm’s operations 
(Boulden, 1958; Lancaster and Reynolds, 2002), which is a crucial task in supply 
chain management under dynamic market demands and greatly affects retailers and 
other channel members in various ways (Xiao and Yang, 2008). Without sales 
forecasts, operations can only respond retroactively, leading to poor production 
planning, lost orders, inadequate customer service, and poorly utilized resources 
(Fildes and Hastings, 1994). Recent research has shown that effective sales forecasting 
enables improvements in supply chain performance (Bayraktar  et al. , 2008; Zhao 
 et al. , 2002). Because of ever- increasing global competition, sales forecasting plays 
a more and more prominent role in supply chain management when the profi tability 
and the long- term viability of a fi rm rely on effective and effi cient sales forecasts. 
This chapter investigates the medium- term fashion sales forecasting problem to 
facilitate effective sales forecasting in fashion retail supply chains. 

   9.1.1  Fashion sales forecasting 

 The fashion industry is characterized by short product life cycles, volatile 
customer demands, tremendous product variety, and long supply processes 
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(Sen, 2008). Sales of most fashion items are strongly seasonal. Uncertain 
customer demands in a frequently changing market environment and numerous 
explanatory variables that infl uence fashion sales cause an increase in irregularity 
or randomicity of sales data. Such distinct characteristics increase the complexity 
of sales forecasting in the fashion retail supply chain. It is defi nitely desirable 
to develop forecasting models which are fl exible and robust enough to handle 
these distinct characteristics of fashion sales data. Several studies have been 
reported to investigate fashion sales forecasting problems from different 
perspectives. Frank  et al.  (2004) proposed a multivariate fuzzy logic model 
to forecast women’s casual sales. Thomassey and Happiette (2007) developed 
a neural network (NN)-based system to forecast sales profi les of new apparel 
items by extracting and analyzing available data with a self- organizing map 
NN-based clustering procedure and a probabilistic NN-based decision tree 
technique. Au  et al.  (2008) fulfi lled fashion retail sales forecasting by developing 
an evolutionary NN (ENN) model, which adopted a genetic algorithm to determine 
an appropriate network structure for improving the generalization capacity of 
NNs. The ENN model is effective for sales forecasting of fashion items with 
features of low demand uncertainty and weak seasonal trends. Unfortunately, 
most fashion items are characterized by high demand uncertainty and strong 
seasonality. Sun  et al.  (2008) applied an NN model with extreme learning machine 
for fashion sales forecasting, and investigated the relationship between sales 
amount and some signifi cant fashion product attributes such as color, size and 
price. 

 The studies in fashion sales forecasting mentioned above focus on forecasting 
sales volumes and sales profi les of fashion items, which is usually short- term 
forecasting. Due to the short life cycles and frequent replacements of fashion 
items, only forecasting sales of each item is not adequate in the fashion retail 
supply chain. In fact, the fashion retail enterprise usually makes sourcing budgets, 
on an annual, quarterly and monthly basis, by forecasting total sales amounts of 
fashion items in one fashion item category or in all categories of one city. Then the 
fashion designers determine which items need to be purchased or produced in 
each category. Each fashion item category consists of multiple items with some 
common attributes. In an enterprise, the categories are usually unchanged while 
the items in each category frequently change in different selling seasons. For 
instance, the short- sleeved T-shirt category consists of 200 items in this season, 
but 150 of them will probably be replaced by 150 new items in the next season. 
Based on soft computing techniques, Thomassey  et al.  (2005) developed a 
forecasting support system which involved medium- term sales forecasting at 
different sales aggregation levels. However, it is very diffi cult to apply the system 
in practice because it uses multiple soft computing techniques, and too many 
parameters for such techniques need to be set. Due to the lack of effective 
methodologies for fashion sales forecasting under dynamic market demands, 
medium- term sales forecasting in today’s fashion retail supply chain mainly 
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depends on subjective experience or simple linear models such as the autoregressive 
(AR) model and the moving average model. 

 To provide a fl exible, robust and effective methodology for fashion sales 
forecasting, this chapter examines the sales forecasting problem based on the 
forecasting process in real- world fashion retailing, which forecasts the total sales 
amount of each fashion item category or each city (all categories) on a medium- 
term basis (annually, quarterly and monthly).  

   9.1.2  Techniques for sales forecasting 

 Various time- series forecasting models have been widely applied in sales 
forecasting, such as exponential smoothing models (Gardner; 2006, Geurts and 
Kelly; 1986 Harrison; 1967 Taylor; 2007), ARIMA models (Dalrymple; 1978 
Goh and Law; 2002 Tang  et al. ; 1991), expert systems (Lo; 1994, Smith  et al. ; 
1996), fuzzy systems (Chang  et al. ; 2008 Chen and Wang; 1999 Frank  et al. ; 
2004) and NN models (Ansuj  et al. ; 1996 Chu and Zhang; 2003 Sun  et al. ; 2008 
Thiesing and Vornberger; 1997 Zhang and Qi; 2005). 

 The exponential smoothing and ARIMA models are categorized as linear 
methods which employ a linear functional form for time- series modeling (De 
Gooijer and Hyndman; 2006). As such linear methods cannot capture features that 
commonly occur in many actual time- series data, such as non- linear patterns, 
occasional outlying observations and asymmetric cycles (Makridakis  et al. ; 1998), 
they are not suitable for fashion sales series characterized by strong non- linearity. 
Expert systems, fuzzy systems and NN models are heuristic methods, among 
which NNs are the most attractive alternatives for both forecasting researchers 
and practitioners, since a large number of research papers have reported successful 
experiments and practical tests and have shown that NNs exhibit better forecasting 
performances than some traditional approaches (Ansuj  et al. ; 1996; Chu and 
Zhang; 2003; Tang  et al. ;1991). 

 Ansuj  et al.  (1996) presented the use of a backpropagation (BP) NN model 
in analyzing the behavior of sales in a medium- sized enterprise and reported 
that the BP model generated more accurate forecasts than did ARIMA 
models with interventions. Thiesing and Vornberger (1997) developed an 
NN-based forecasting system to predict the weekly product demand in a German 
supermarket company. Alon  et al.  (2001) compared the performance of NN 
models with Levenberg-Marquardt learning algorithm and traditional statistical 
methods in forecasting US aggregate retail sales, and concluded that the 
NN model was able to effectively capture the dynamic non- linear trend and 
seasonal patterns, as well as the interactions between them. Chu and Zhang 
(2003) compared the performance of NN models and various linear models for 
forecasting aggregate retail sales and reported that the overall best model is the 
NN model built on deseasonalized time- series data. Chang  et al.  (2005) proposed 
an evolving NN forecasting model by integrating genetic algorithms and BP NN 
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to generate more accurate forecasts than traditional statistical models and BP 
networks. 

 The previous studies usually adopted NNs with a gradient learning algorithm, 
such as BP, which is known to have slow convergence speed caused by 
the problem of local minima. In recent years, a new learning algorithm called 
extreme learning machine (ELM) has been proposed (Huang  et al. , 2004), 
which tends to provide a better generalization performance and much faster 
learning speed than gradient learning algorithms. The ELM can also avoid 
many diffi culties faced by gradient learning algorithms, such as the selection of 
stopping criteria, learning rate and learning epochs, due to its distinct learning 
mechanism. Sun  et al. ’s (2008) research in fashion sales forecasting demonstrated 
that the ELM-based NN had a much shorter training time and higher forecast 
accuracy than BP NNs. However, ELM determines the input weights and hidden 
biases randomly, which may lead to a higher number of hidden neurons and 
adversely affect the generalization performance of the network. Furthermore, the 
available historical sales data (training samples) for medium- term fashion sales 
forecasting are usually limited, and therefore the NN forecasting model is more 
apt to be over- parameterized and overfi tted. Zhu  et al.  (2005) developed an 
evolutionary ELM by combining a modifi ed differential evolution and an ELM, 
and concluded that higher generalization performance can be obtained by using 
an optimization technique to determine the optimal input weights and hidden 
biases. 

 To overcome the drawbacks of existing NN forecasting models, in this chapter 
a hybrid intelligent (HI) model comprising a data pre- processing component and 
a HI forecaster is developed to tackle the sales forecasting problems in the fashion 
retail supply chain. In the HI forecaster, it will be the fi rst time that a novel 
metaheuristic optimization technique, harmony search (HS) algorithm (Mahdavi 
 et al. , 2007), is integrated with ELM to construct a novel learning algorithm to 
obtain optimal NN weights and achieve better NN generalization performance. A 
heuristic fi ne- tuning process will also be presented and used in the HI forecaster 
to further improve the forecasting performance. The HI model will be able to 
effectively handle the non- linearity and irregularity of medium- term fashion sales 
caused by various realistic factors in the dynamic fashion retail supply chain, such 
as short product life cycles, volatile customer demands, and tremendous product 
variety. 

 The rest of this chapter is organized as follows. In Section 9.2, the proposed HI 
model for medium- term fashion sales forecasting is presented. Experimental 
design is presented in Section 9.3 concerning how numerical experiments are 
conducted to compare the forecasting performances of the proposed model and 
existing models. Section 9.4 presents and analyzes the experimental results. 
Section 9.5 further discusses the forecasting performance of the proposed model 
and its components based on extensive experimental results. Finally, conclusions 
and future work are described in Section 9.6.   
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   9.2  Hybrid intelligent model for medium- term 

fashion sales forecasting 

 The HI model is composed of a data pre- processing component and an HI forecaster. 
 Figure 9.1  shows the framework of the HI model. The data pre- processing 
component involves three processes, including detecting and removing outliers, 
interpolating missing data and data normalization. The pre- processed historical 
sale data are used as training samples of the HI forecaster generating the fi nal sales 
forecast. The details of the HI model are given in the following sub- sections. 

   9.2.1  Data pre- processing 

 Data pre- processing has a signifi cant impact on the performance of supervised 
learning models (Kotsiantis  et al. , 2006) because unreliable samples probably lead 
to wrong outputs. Although fashion sales data are usually noisy and infl uenced by 
various unpredictable external factors, previous studies in fashion sales forecasting 
did not consider data pre- processing of sales data. Effective data pre- processing 
methods are applied in this study to avoid the effects of noisy and unreliable data. 

 In the fashion retail market, time series of sales of most item categories are 
strongly seasonal, such as knitted short- sleeved dresses (spring/summer) and 
coats (fall/winter). In this study, same- period time series, comprising sales data 
only from the same period of past years, are also used to observe the change trend 

   9.1     Framework of the hybrid intelligent model.     
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of fashion sales. Let  s   i,j   denote the sales amount in  j th month of  i th year. The 
following sequence represents the original monthly time series  S  from the fi rst 
month of  i th year to the 12th month of  i  +  k th year:

  s   i ,1 ,  s   i ,2 , . . .,  s   i ,12 ,  s   i  +1, 1 ,  s   i  +1, 2 , . . .,  s   i  +1, 12 , . . .,  s   i  +  k , 1 ,  s   i  +  k ,2 , . . .,  s   i  +  k ,12 .  

 The time series  S  involves 12 monthly same- period time series. Let  S   j   denote the 
same- period time series in  j  th month (   j  = 1,2, . . ., 12).  S   j   can be represented as 
follows:

  s   i, j  ,  s   i  + 1,  j   , . . .,  s   i  +  k, j  .  

  Detecting and removing outliers 

 An outlier is an observation that deviates so much from the rest of the observations 
as to arouse suspicion that the outlier was generated by a different mechanism. On 
the basis of extensive analyses on historical sales data of different fashion item 
categories, this study considers the observation  s   i, j   in the same- period time series 
 S   j   of an item category as an outlier if it satisfi es the following condition:

 abs( s   i,j   − mean( S   j  )) >  n  · std( S   j  )  

 where mean(·) denotes the mean function, std(·) denotes the standard deviation 
function and abs(·) denotes the absolute value function. In this research,  n  is set to 
3. The outlier needs to be removed and then to be handled as a missing observation.  

  Interpolating missing data 

 Incomplete data is an inevitable problem in handling most real- world data sources. 
The missing data need to be interpolated to maintain completeness and the change 
trend of time series. In this study, a missing observation is replaced by the mean 
of its latest two neighboring data in its same- period time series.  

  Normalization and de- normalization 

 Data normalization can speed up training time of NNs by starting the training process 
for each feature within the same scale. The  z -score normalization method (Kotsiantis 
 et al. , 2006) is adopted to normalize the input and output variables in this research. 
Taking the same- period time series  S   j   as an example, its normalized series  S   j  ′ is

     

 The de- normalization process is described as follows.

  S   j   = mean( S   j  ) +  S   j  ′·std( S   j  )    
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   9.2.2  Hybrid intelligent forecaster 

 After the sales time series have been pre- processed, an HI forecaster is applied to 
generate medium- term sales forecasts. The essential feature of the HI forecaster is 
a novel learning algorithm- based NN forecasting. The HS-ELM learning 
algorithm is developed to improve NN generalization ability by integrating an 
HS algorithm with ELM. In addition, it is known that the number of hidden 
neurons has a large effect on NN performance (Zhang and Qi, 2005). To decrease 
the randomicity of NN outputs, the HI forecaster considers the forecasting 
outputs of multiple NNs with different numbers of hidden neurons. In the HI 
forecaster, the HS-ELM-based NN fi rst generate multiple forecasting outputs by 
repeatedly running the network with different numbers of hidden neurons from 1 
to  N  max  hl   ·  N  max  hl   denotes the maximum number of hidden neurons. After the 
outputs of the proposed NNs have been de- normalized, a heuristic fi ne- tuning 
process is then used to analyze these outputs and generate the fi nal sales forecast. 
The fl ow chart of the HI forecaster is shown in  Fig. 9.2 , and its details are described 
in the following sub- sections. 

   9.2     Flow chart of the hybrid intelligent forecaster.     
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  Extreme learning machine 

 The ELM is a novel learning algorithm for single- hidden- layer feedforward NNs 
(SLFNs). Assume that SLFNs with  L  hidden neurons and activation function  g ( x ) 
are trained to approximate  N  distinct samples ( u   i  ,  y   i  ) with zero error means, where 
 u   i   is the input of samples and  u   i   = [ u   i 1 ,  u   i 2 , . . .,  u   in  ] 

T  ∈ R  n  ;  y   i   is the output of samples 
and  y   i   = [ y   i 1 ,  y   i 2 , . . .,  y   im  ] 

T  ∈ R  m  . In ELM-based NNs, the input weights and hidden 
biases are generated randomly. The non- linear SLFNs can thus be converted into 
the following relationship:

 H β  = T, [9.1]  

 where H = { h   ij  } ( i  = 1, . . .,  N  and  j  = 1, . . .,  L ) denotes the hidden-layer output 
matrix,  h   ij   =  g ( w   j   ·  u   i   +  b   j  ) is the output of  j th hidden neuron with respect to  u   i  ;  w   j   
= [ w   j 1 ,  w   j 2 , . . .,  w   jn  ] 

T  is the weight vector connecting  j th hidden neuron and input 
neurons, and  b   j   denotes the bias of  j th hidden neuron;  w   j   ·  u   i   denotes the inner 
product of  w   j   and  u   i  ;  β  = [ β  1 , . . .,  β   j  , . . .,  β   L  ] 

T  (  j  = 1, . . .,  L ) is the matrix of output 
weights and  β   j   = [ β   j 1 ,  β   j 2 , . . .,  β   jm  ] 

T  denotes the weight vector connecting the  j th 
hidden neuron and output neurons; Y = [ y  1 ,  y  2 , . . .,  y   N  ] 

T  is the matrix of targets 
(desired outputs).   

 The determination of the output weights between the hidden layer and the 
output layer is to fi nd the least- square solution to the given linear system. The 
minimum norm least- square (LS) solution to Eq. 9.1 is

  β̂ =H † Y, [9.2]  

 where H †  is the Moore–Penrose generalized inverse of matrix H. The minimum 
norm least-square solution is unique and has the smallest norm among all the 
least-square solutions.  

  HS-ELM learning algorithm 

 In this study, the HS-ELM learning algorithm is developed to train NNs, in which 
the improved HS algorithm (Mahdavi  et al. , 2007) is adopted to search for optimal 
input weights and hidden biases of ELM instead of generating these weights and 
biases randomly. HS algorithm is a newly developed metaheuristic technique, 
which generates a new vector (individual) by considering all existing vectors, 
whereas the traditional evolutionary algorithm such as genetic algorithm (GA) 
only considers two parental vectors. This distinct feature of HS algorithm increases 
the algorithm’s fl exibility so that the algorithm can generate better solutions than 
conventional mathematical methods or GA-based approaches (Lee and Geem, 
2004; Mahdavi  et al. , 2007). 

 The following steps describe how the HS-ELM algorithm is implemented:

   •    Step 1 :  Initialize algorithm parameters . The parameters related to the problem 
and HS algorithm need to be specifi ed in this step, including the possible 
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ranges of values for all decision variables (input weights and hidden biases), 
the number of decision variables ( P ), the harmony memory size ( HMS ), 
harmony memory consideration rate ( HMCR ), pitch adjustment rate ( PAR ) 
and the number of improvisations ( NI ). The harmony memory (HM) and the 
 HMS  are similar to the genetic pool and the population size in the genetic 
algorithm respectively.  HMCR  usually ranges between 0.6 and 0.9 and  PAR  
ranges between 0.1 and 0.5.  

  •    Step 2:   Initialize the harmony memory . The HM is generated randomly, and 
each HM member (solution vector), v, represents a distinct feasible solution of 
all decision variables. That is, v = [ v  1 ,  v  2 , . . .,  v   P  ]. The decision variables are 
composed of all input weights and hidden biases.  

  •    Step 3:   Calculate output weights and fi tness of each individual . For each 
individual in the HM, the corresponding output weights of the HS-ELM-based 
NN are analytically computed by Moore–Penrose generalized inverse (Huang 
 et al. , 2004). Based on the individual and its output weights, the fi tness of the 
individual is evaluated by comparing the sample output and the NN output 
according to a specifi ed error criterion (accuracy measure), such as root mean 
square error, mean absolute percentage error.  

  •    Step 4 :  Improvise a new harmony . After the fi tness of all individuals in the 
population is calculated, two HS procedures are used to improvise a new 
harmony (generate a new solution vector). Generating a new harmony is 
called improvisation. A new harmony, v′ = [ v  1 ′,  v  2 ′, . . .,  v   P  ′], is generated based 
on the following two procedures.  

   Memory consideration: The new variable value  v   i  ′ is selected from memory 
with probability  HMCR  or selected randomly from the allowed value range 
with probability (1 −  HMCR ).

       

   Pitch adjustment: The decision variable obtained by the memory consideration 
should be pitch- adjusted with probability  PAR :

       

   where  bw  is an arbitrary distance bandwidth and  rand  is a random function 
generating a random number between 0 and 1. In this chapter, the values of 
 PAR  and  bw  are set according to the methods presented by Mahdavi  et al. , 
(2007).  

  •   Step 5  : For the solution vector newly generated, its corresponding output 
weights and fi tness are calculated by using the methods described in Step 3.  
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  •    Step 6 :  Update the harmony memory . If the new solution vector is better 
than the worst vector in the HM in terms of the objective function 
value (fi tness), the new vector is included in the HM and the existing worst 
harmony is excluded from the HM. The HM is then sorted by the objective 
function value.  

  •   Step 7  :  Check termination criterion . The HS in this study is controlled 
by a specifi ed number of improvisations and a diversity measure. The 
diversity measure is satisfi ed if a specifi ed percentage  PerHM  of HM 
members is the same in the current generation. If either of the two 
termination criteria is satisfi ed, the HS process is terminated. Otherwise, 
repeat Steps 4–6.    

 The input of NNs usually uses several latest sales in the existing literature 
(Au  et al. , 2008; Sun  et al. , 2008). The strong non- linearity and seasonality of 
sales data series increase the complexity of fashion sales forecasting. Due to 
the seasonal characteristic of fashion sales, this study attempts to investigate 
fashion sales series from a new perspective. By extensively analyzing the 
change trends of monthly sales data, it can be found that the patterns in the 
same- period time series are much simpler than the original pattern if the original 
monthly time series are strongly seasonal. In this research, for strongly 
seasonal monthly time series, we use the same- period time series to forecast the 
next month’s sales. Furthermore, the output of the NN needs to be de- normalized, 
since the training samples are normalized data. The de- normalized output is the 
initial sales forecast.  

  Heuristic fi ne- tuning process 

 The initial sales forecasts from the HS-ELM-based NNs with different numbers 
of hidden neurons are transferred to the heuristic fi ne- tuning process. The initial 
forecasts can be unreasonable because the NN may be overfi tted. Let PN denote 
the set of percent changes of two neighboring values in a same- period sales data 
series  S   j  , and  pf  denote the percent change of the forecast of the series  S   j   to its 
latest same- period observation. The initial forecast is considered unreasonable if 
one of the following conditions is met:

  pf  > max(PN) at  pf  > 0 and max(PN) > 0; 

  pf  >  abs (min(PN)) at  pf  > 0 and max(PN) < 0; 

  abs ( pf ) > max(PN) at  pf  < 0 and min(PN) > 0; 

  pf  < min(PN) at  pf  < 0 and min(PN) < 0;  

 where max(·), min(·) and abs(·) are maximum, minimum and absolute value 
functions, respectively. Lastly, all the reasonable initial forecasts are averaged as 
the fi nal sales forecast.    
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   9.3  Evaluating model performance with 

real sales data 

 To evaluate the performance of the proposed forecasting model, extensive 
experiments were conducted in terms of real fashion sales data, which forecast the 
total sales amounts of various item categories and cities on a monthly, quarterly or 
annual basis. 

   9.3.1  Fashion sales data 

 Real sales data were collected from one of the largest fashion retail companies in 
Hong Kong and Mainland China. They include monthly sales data of different 
cities and different item categories of each city from January 2001 through 
December 2008. The data from the last two years are out- of-sample data used to 
compare and evaluate the accuracy of forecasting models. For each out- of-sample 
observation, its previous sales data are used as training samples to set the 
forecasting model for making a one- step-ahead forecast.  

   9.3.2  Parameter setting for proposed model 

  Table 9.1  shows the parameters of the proposed model for experiments presented 
in this chapter, in which  N   inlay   denotes the number of input neurons and  N  max  hl   
denotes the maximum number of hidden neurons;  PAR  min  and  PAR  max  denote the 
minimum and the maximum of  PAR , and  bw  min  and  bw  max  denote the minimum and 
the maximum of  bw . Columns 2 and 3 show the parameters for monthly forecasting 

    Table 9.1     Parameters of hybrid intelligent models used in experiments  

 Medium- term forecasting 

 Monthly  Quarterly  Annual 

 One category  One city* 

  N   inlay    2  12  4  2 
  N  max  hl    10  50  15  10 
  HMCR   0.95  0.95  0.95  0.95 
  PAR  min   0.45  0.45  0.45  0.45 
  PAR  max   0.99  0.99  0.99  0.99 
  HMS   30  100  50  30 
  bw  min   1e-6  1e-6  1e-6  1e-6 
  bw  max   4  4  4  4 
  NI   1000  10000  5000  1000 
  PerHM   90%  90%  90%  90% 

   * One city means all item categories of a city.     
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of one or all categories of a city, respectively, while columns 3 and 4 show the 
parameters for quarterly and annual forecasting, respectively. The activation 

function  g ( x ) of NN is the sigmoidal function, i.e.   . In this chapter, 

the monthly forecasting of each fashion item category is fulfi lled by using its 
same- period time series, whereas others are fulfi lled by using their original time 
series directly. 

    9.3.3  Forecasting models used for comparison and 
their parameters 

 The forecasting performance of the proposed model is compared with that of six 
different models, including the extreme learning machine (ELME) model 
proposed by Sun  et al.  (2008), the ENN model proposed by Au  et al.  (2008), the 
ARIMA  ( p, d, q )  model, the AR (  p ) model and the AR2 model. The AR2 model is the 
same as the AR (  p ) model except for using different forms of time series. The fi rst 
four models use original time series while the last one uses the same- period series. 
The parameters of these models for different medium- term forecasting problems 
are shown in  Table 9.2 . For annual forecasting, the AR model is the same as the 
AR2 model, and the ARIMA model is not applicable because the available sample 
data are insuffi cient to estimate this model. The other parameters of the fi rst two 
NN models are the same as the corresponding parameter setting in Sun  et al.  
(2008) and Au  et al.  (2008). 

    9.3.4  Accuracy measures 

 No accuracy measure is generally applicable to all forecasting problems due to 
variation in forecasting objectives and data scales (De Gooijer and Hyndman, 
2006; Hyndman and Koehler, 2006). Let  Y   t   denote the observation at time  t  and  F   t   
denote the forecast of  Y   t  . Then defi ne the forecast error  e   t   =  Y   t   −  F   t  . In this chapter, 

    Table 9.2     Parameters of different models used in experiments  

 Medium- term forecasting 

 Monthly  Quarterly  Annual 

 ELME model   N   inlay    12  4  2 
  N  max  hl    50  15  10 

 ENN model   N   inlay    12  4  2 
 ARIMA  ( p,d,q )  (12,0,12)  (4,0,4)  / 
 AR   p   12  4  3 
 AR2   p   3  3  / 
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the following three measures of forecast accuracy are adopted to calculate the 
fi tness of each solution vector of the HI forecaster:

   •   Root mean square error (RMSE): RMSE is popular and often chosen by 
practitioners because of its ease of use and its theoretical relevance in statistical 
modeling. RMSE is expressed as follows:

      .

  •   Mean absolute percentage error (MAPE): this criterion is less sensitive to 
large errors than RMSE and can be expressed as

      .

  •   Mean absolute scaled error (MASE): To overcome the drawbacks of existing 
measures, Hyndman and Koehler (2006) proposed MASE as the standard 
measure for comparing forecast accuracy across multiple time series after 
comparing various accuracy measures for univariate time- series forecasting. 
MASE is expressed as follows:

        .

 MASE is less than one if it arises from a better forecast than the average one- step 
Naïve forecast computed in- sample. The Naïve model uses the last observation of 
the time series directly as the forecast. Conversely, it is greater than one if the 
forecast is worse than the average one- step Naïve forecast computed in- sample.   

   9.4  Experimental results and analysis 

 This section presents experimental results of three experiments, which involve 
monthly, quarterly and annual forecasting respectively. In each experiment, the 
sales amounts of the same four cities and four fashion item categories, respectively, 
are forecast. The cities selected are the four most important for the company’s 
business. The four categories are knitted short- sleeved dresses (spring/summer), 
jean pants (spring/summer), coats (fall/winter) and tatting pants (fall/winter). 
Their sales, from the same city, are strongly seasonal and have more signifi cant 
infl uence on the company’s business than other categories. 

   9.4.1  Experiment 1: monthly forecasting 

 The monthly time series of sales for category 1 and city 1, respectively, are shown 
in  Fig. 9.3  and  9.4 , in which the last 24 observations from the last 2 years are 
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out- of-sample data for model comparison. It is clear that the time series of 
category 1 has stronger seasonality and less randomicity than that of city 1. The 
comparison of actual sales and out- of-sample forecasts of category 1 and city 1, 
generated by the proposed model, is shown in  Fig. 9.5  and  9.6 . Due to space 
limitations, this chapter does not present the fi gures of actual sales and forecasting 
results of other categories and cities. 

   9.3     Monthly time series of sales for category 1 (January 2001–
December 2008).     

   9.4     Monthly time series of sales for city 1 (January 2001–December 
2008).     
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   9.5     Monthly forecasting result generated by the proposed model 
(category 1).     

   9.6     Monthly forecasting result generated by the proposed model 
(city 1).     

 The comparison of forecasting results of the proposed model and fi ve other 
models is shown in  Tables 9.3 – 9.5 . Taking category 1 as an example, the proposed 
model produces smaller RMSE, MAPE and MASE, which shows that the 
proposed model generates better results whichever accuracy measure is used. For 
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other categories and cities, the RMSE, MAPE and MASE generated by the 
proposed model are usually the minimum value or very close to the minimum 
value. It is clear that the proposed model exhibits much better monthly forecasting 
performance than other models whichever accuracy measure is used. 

    Table 9.3     Comparison of monthly forecasting results (category 1 and city 1)  

 Category 1  City 1 

 RMSE  MAPE  MASE  RMSE  MAPE  MASE 

 Proposed 
model 

 2.6E+06  19.3%  0.30  3.9E+06  14.6%  0.58 

 ELME 
model 

 3.5E+06  79.2%  0.39  3.9E+06  15.3%  0.58 

 ENN 
model 

 2.8E+06  57.6%  0.32  5.4E+06  24.8%  0.91 

 ARIMA  3.2E+06  31.8%  0.35  7.4E+06  27.5%  1.07 
 AR  2.6E+06  36.9%  0.31  4.9E+06  17.2%  0.67 
 AR2  3.4E+06  26.2%  0.37  5.8E+06  22.6%  0.91 

    Table 9.4     Comparison of monthly forecasting results (categories 2–4)  

 Category 2  Category 3  Category 4 

 RMSE  MAPE  MASE  RMSE  MAPE  MASE  RMSE  MAPE  MASE 

 Proposed 
model 

 2.8E+06  25.6%  0.50  1.7E+06  37.0%  0.58  1.5E+06  58.1%  0.46 

 ELME 
model 

 2.4E+06  78.0%  0.46  2.4E+06  86.3%  0.81  2.6E+06  5209.9%  1.15 

 ENN 
model 

 2.5E+06  48.6%  0.48  2.1E+06  55.4%  0.71  2.9E+06  3464.8%  1.14 

 ARIMA  2.2E+06  38.1%  0.39  1.9E+06  35.5%  0.54  2.7E+06  6665.4%  0.92 
 AR  2.2E+06  32.7%  0.41  1.9E+06  41.3%  0.56  1.6E+06  582.9%  0.49 
 AR2  3.0E+06  31.5%  0.53  2.7E+06  53.4%  0.79  2.1E+06  84.0%  0.64 

    Table 9.5     Comparison of monthly forecasting results (cities 2–4)  

 City 2  City 3  City 4 

 RMSE  MAPE  MASE  RMSE  MAPE  MASE  RMSE  MAPE  MASE 

 Proposed 
model 

 1.8E+07  17.7%  0.93  6.8E+06  15.2%  1.12  5.3E+06  15.5%  0.54 

 ELME model  1.8E+07  17.2%  0.88  8.0E+06  19.9%  1.39  6.1E+06  17.7%  0.63 
 ENN model  2.2E+07  17.6%  0.97  7.6E+06  16.5%  1.27  6.6E+06  21.4%  0.73 
 ARIMA  2.1E+07  25.1%  1.11  7.6E+06  19.5%  1.37  7.4E+06  24.0%  0.85 
 AR  2.0E+07  19.0%  0.95  7.0E+06  15.4%  1.14  6.2E+06  16.5%  0.60 
 AR2  2.1E+07  20.5%  1.03  1.0E+07  26.1%  1.88  7.6E+06  19.6%  0.74 
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    9.4.2  Experiment 2: quarterly forecasting 

  Figure 9.7  and  9.8  show the quarterly time series of sales for category 1 and city 
1 and their forecasting results generated by the proposed model. The change 
trends of forecasts generated by the proposed model and the real data are 
consistent, as shown in  Fig. 9.7 , but quite different, as seen in  Fig. 9.8 . This is 
because the quarterly time series of category 1 are regular and strongly periodic 
while the time series of city 1 is irregular and almost random. For instance, 
observations 25 and 26 in  Fig. 9.8  deviate markedly from their historical data. 
Their forecasts do not match the real data very well because no univariate time 
series forecasting model can foresee these abnormal sudden changes. 

 The comparison of quarterly forecasting results of the proposed model and 
fi ve other models is shown in  Tables 9.6 – 9.8 . For all forecasting cases except 
category 2, the RMSE, MAPE and MASE generated by the proposed model are 
the minimum value or very close to the minimum value. For category 2, the 
forecasts generated by the proposed model are superior to the two NN models and 
the ARIMA model but inferior to the two AR models. On the whole, similarly to 
the monthly forecasting results, the proposed model provides more accurate 
quarterly forecasting than other models. 

   9.7     Quarterly forecasting result generated by the proposed model 
(category 1).     
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   9.8     Quarterly forecasting result generated by the proposed model 
(city 1).     

    Table 9.6     Comparison of quarterly forecasting results (category 1 and city 1)  

 Category 1  City 1 

 RMSE  MAPE  MASE  RMSE  MAPE  MASE 

 Proposed 
model 

 4.4E+06  11.9%  0.07  7.7E+06  11.0%  0.62 

 ELME model  6.0E+06  14.8%  0.09  1.0E+07  15.1%  0.85 
 ENN model  5.1E+06  14.3%  0.09  9.0E+06  12.1%  0.67 
 ARIMA  1.0E+07  15.3%  0.16  1.1E+07  15.5%  0.93 
 AR  5.4E+06  8.7%  0.08  7.8E+06  11.2%  0.65 
 AR2  5.2E+06  15.9%  0.09  8.2E+06  11.7%  0.69 

    Table 9.7     Comparison of quarterly forecasting results (Categories 2–4)  

 Category 2  Category 3  Category 4 

 RMSE  MAPE  MASE  RMSE  MAPE  MASE  RMSE  MAPE  MASE 

 Proposed 
model 

 5.5E+06  17.2%  0.15  3.1E+06  15.1%  0.13  1.9E+06  16.2%  0.13 

 ELME 
model 

 7.3E+06  20.9%  0.20  3.6E+06  23.3%  0.23  9.0E+06  140.7%  0.38 

 ENN 
model 

 6.8E+06  20.3%  0.19  2.2E+06  14.4%  0.16  6.0E+06  232.1%  0.32 

 ARIMA  5.8E+08  27.2%  0.16  3.9E+06  20.2%  0.25  4.2E+06  40.5%  0.24 
 AR  4.4E+06  9.9%  0.10  3.2E+06  25.2%  0.23  4.1E+06  18.0%  0.19 
 AR2  5.2E+06  10.2%  0.12  4.0E+06  34.1%  0.28  5.5E+06  34.6%  0.22 
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    9.4.3  Experiment 3: annual forecasting 

 The annual time series are strongly non- linear and highly irregular due to various 
uncertainties in fashion retailing.  Figure 9.9  shows the annual sales series of 
category 1 and city 1 and their forecasting results generated by the proposed model. 

 It is very diffi cult to predict these irregular annual time series, especially when 
the sample data are insuffi cient. The comparison of annual forecasting results 

    Table 9.8     Comparison of quarterly forecasting results (cities 2–4)  

 City 2  City 3  City 4 

 RMSE  MAPE  MASE  RMSE  MAPE  MASE  RMSE  MAPE  MASE 

 Proposed 
model 

 2.8E+07  9.4%  0.66  1.1E+07  10.7%  1.07  8.3E+06  9.4%  0.45 

 ELME 
model 

 3.6E+07  13.5%  0.94  1.5E+07  14.0%  1.54  1.4E+07  12.1%  0.62 

 ENN 
model 

 3.3E+07  11.1%  0.79  1.1E+07  10.6%  1.16  8.5E+06  9.0%  0.41 

 ARIMA  2.1E+07  7.6%  0.51  1.3E+07  13.9%  1.45  1.0E+07  10.2%  0.53 
 AR  3.0E+07  10.4%  0.74  1.2E+07  11.5%  1.28  7.0E+06  8.0%  0.38 
 AR2  3.9E+07  14.7%  1.03  1.3E+07  11.0%  1.21  1.2E+07  13.8%  0.64 

   9.9     Annual forecasting result generated by the proposed model 
(category 1 and city 1).     
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generated by the proposed model and three other models is shown in  Tables 9.9 –
 9.11 . It can be easily found from  Tables 9.9 – 9.11  that, on the whole, the proposed 
model also exhibits superior performance over other models, although the 
superiority is not as prominent as that in experiments 1 and 2. In this experiment, 
the AR model and the ENN model provide better forecasting results in several 
cases. That is because NN models are prone to being over- parameterized when 
training samples are insuffi cient and the limited samples are not enough to model 
the strong non- linearity of annual sales series. 

    Table 9.9     Comparison of annual forecasting results (category 1 and city 1)  

 Category 1  City 1 

 RMSE  MAPE  MASE  RMSE  MAPE  MASE 

 Proposed model  1.2E+07  6.5%  0.65  2.8E+07  10.4%  1.53 
 ELME model  4.5E+07  21.4%  2.27  8.1E+07  23.8%  3.65 
 ENN model  5.0E+06  2.3%  0.25  3.8E+07  15.9%  2.39 
 AR  1.2E+07  6.2%  0.66  3.2E+07  10.6%  1.57 

    Table 9.10     Comparison of annual forecasting results (categories 2–4)  

 Category 2  Category 3  Category 4 

 RMSE  MAPE  MASE  RMSE  MAPE  MASE  RMSE  MAPE  MASE 

 Proposed 
model 

 1.7E+07  11.1%  1.21  4.1E+06  7.0%  0.57  1.4E+07  24.9%  3.03 

 ELME 
model 

 3.3E+07  22.2%  2.42  1.8E+07  31.4%  2.54  3.5E+07  61.2%  7.44 

 ENN 
model 

 2.1E+07  14.0%  1.53  2.5E+06  4.3%  0.35  1.6E+07  28.1%  3.41 

 AR  1.2E+07  7.7%  0.84  4.5E+06  7.7%  0.62  1.5E+07  26.9%  3.27 

    Table 9.11     Comparison of annual forecasting results (Cities 2–4)  

 City 2  City 3  City 4 

 RMSE  MAPE  MASE  RMSE  MAPE  MASE  RMSE  MAPE  MASE 

 Proposed 
model 

 1.4E+08  13.5%  1.87  4.4E+07  12.7%  1.58  2.1E+07    4.8%  0.60 

 ELME 
model 

 1.7E+08  16.3%  2.26  6.7E+07  18.0%  3.43  4.1E+08  101.0%  17.13 

 ENN 
model 

 1.4E+08  13.9%  1.93  9.5E+07  27.1%  5.46  3.7E+07   10.9%  1.86 

 AR  1.2E+08  13.7%  1.84  3.6E+07  10.6%  1.31  4.5E+07   13.9%  1.76 
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     9.5  Assessing forecasting performance 

 This section presents an in- depth discussion on the forecasting performance of the 
proposed HI model. The forecasting performance of the proposed HI model is 
fi rst analyzed based on the experimental results presented in Section 9.4. Further 
analysis is then conducted to validate the superiority of the proposed model over 
other models based on public benchmark data sets. The effectiveness of the 
model’s components, including the heuristic fi ne- tuning process, data pre- 
processing component and HI forecaster, is also analyzed in this section. 

   9.5.1  Performance comparison and analysis 

 Based on the three experiments presented in Section 9.4,  Fig. 9.10  further 
shows the comparison of forecasting performances generated by different models, 
in which each bar indicates the number of best forecasts generated by its 
corresponding model in terms of a specifi ed accuracy measure. For instance, the 
proposed HI model generates the best forecasting performance for 14 forecasting 
cases when RMSE is used as the accuracy measure. It is proved that the proposed 
model is able to provide much superior forecasting performances to other 
models. Its superiority would be more obvious if we did not consider the results 
of experiment 3, in which insuffi cient sample data probably weaken its 
performance. 

   9.10     Comparison of forecasting performance of different models.     
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 The proposed model uses a heuristic fi ne- tuning process to eliminate unreasonable 
forecasts, and the experimental results indicate that this is helpful to improve 
forecasting performance. Actually, for some forecasting cases in the experiments 
(e.g. the monthly forecasting of four categories), the MAPEs generated by ELME 
and ENN models are much greater than the MAPEs generated by traditional models. 
These abnormally large MAPEs are caused by unreasonable forecasts. The 
experimental results also revealed that different accuracy measures have effects on 
forecasting performance. For instance, for the monthly forecasting of category 2, the 
proposed model generates minimal MAPE but almost maximal RMSE and MASE. 
Therefore, it is important to select appropriate accuracy measures in practice.  

   9.5.2  Further analysis on forecasting performance of 
proposed model 

 It can be found from the experimental results in Section 9.4 that the ENN model 
and the AR model are the two major competitors for the proposed HI model, 
especially when annual forecasting was conducted. To further compare the annual 
forecasting performance of the HI model and the two other models, we made 
comprehensive simulation studies using public benchmark data sets with suffi cient 
sample data. This chapter presents the forecasting results of seven sets of irregular 
annual time series from the well- known forecasting competition (Makridakis 
and Hibon, 2000). These time series included four industry data sets with 
33 observations (series N188–191) and 3 fi nance data sets with 28 observations 
(series N359–N361), which were all irregular without seasonality. Each time 
series contained one or more outliers. The last six observations of each time series 
were used as out- of-sample data to compare the forecasting models. 

  Table 9.12  shows the annual forecasting results of the seven data sets based on 
the proposed HI model, the HI forecaster, the ENN model and the AR model. The 
HI forecaster is same as the HI model except that it does not contain the data pre- 
processing component. The parameter settings of these models were the same as 
those described in Section 9.3. It can be easily found from  Table 9.12  that, for 
each time series, the HI model generates much better forecasts than the ENN and 
AR models. This indicates that, for the annual time series with suffi cient samples, 
the HI model can demonstrate much better performance. The HI forecaster also 
gives much superior performance over the ENN and AR models on the whole, 
which means that the proposed HS-ELM learning algorithm is capable of 
obtaining good generalization performance. Moreover, the performance generated 
by the HI model is much superior to that generated by the HI forecaster. It implies 
that the data pre- processing component in the HI model is helpful to improve the 
forecasting performance, since the HI forecaster can be considered as an HI model 
without the data pre- processing component. That is, the data pre- processing 
component is able to tackle outliers and missing data well so that the forecasting 
performance generated by the HI model can be improved. 
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 According to the forecasting results based on real fashion retail data and 
benchmark data from M3 competition, it can be concluded that the proposed 
model is widely applicable, since it is capable of generating accurate forecasts 
for a variety of time series with irregular patterns as well as strong seasonal 
patterns.   

   9.6  Conclusions 

 This chapter investigates the medium- term sales forecasting problem based on the 
real forecasting process in fashion retailing, which is helpful for fashion retail 
enterprises to facilitate medium- term sales forecasting and thus improve the 
performance and effi ciency of the fashion retail supply chain. An effective HI 
model was developed to deal with the investigated problem, in which a data pre- 
processing component and an HI forecaster were presented. The data pre- 
processing component is used to detect and remove outliers, interpolate missing 
data and normalize sample data. The HI forecaster fi rst generates multiple initial 
forecasts by HS-ELM learning algorithm- based NNs integrating an improved HS 
algorithm with an ELM algorithm, and then uses a heuristic fi ne- tuning process to 
generate the fi nal sales forecasts based on the initial forecasts. The data pre- 
processing component, the HS-ELM learning algorithm, and the heuristic fi ne- 
tuning process introduced in this chapter are helpful to improve forecasting 
performance from different perspectives. The data pre- processing component is 
conducive to providing more reliable training samples. The HS-ELM learning 
algorithm is conducive to the improvement of NN generalization ability, while the 
fi ne- tuning process can further improve forecast accuracy by eliminating 
unreasonable initial forecasts and averaging multiple NN forecasts. 

 Extensive experiments were conducted to validate the proposed HI model in 
terms of real fashion retail data. The experimental results have shown that the HI 
model can tackle the medium- term sales forecasting problem effectively, which 
also demonstrates that the proposed model can provide much superior performance 
over traditional ARIMA models and two recently developed sales forecasting NN 
models. A further experiment was presented based on seven irregular annual data 
sets from M3 competition, which further validates the effectiveness of the 
proposed HI model and shows that the HI model is more powerful to tackle the 
time series with suffi cient sample data. Furthermore, since the time series tackled 
in this chapter involve various patterns such as irregularity and seasonality, the 
proposed model is widely applicable and can be easily extended to solve other 
forecasting problems with similar time- series patterns. 

 The proposed model provides forecasts based only on historical sales data, 
which cannot refl ect the effects of exogenous factors, such as weather and 
economic indexes, on fashion sales. Future research will focus on investigating 
multivariate HI forecasting models considering the effects of various exogenous 
changes on fashion sales. Moreover, it is also a worthwhile research direction to 
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explore an effective intelligent model for short- term sales forecasting on the basis 
of the fi ndings in this research.  
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   Abstract:    This chapter presents a combined use of radio frequency 
identifi cation (RFID) technology and a product cross- selling system to perform 
cross- selling and up- selling for the retail industry. A smart dressing system 
(SDS) enabled by RFID technologies and an intelligent product cross- selling 
system (IPCS) have been developed. Customers’ in- store data can be collected 
using RFID-enabled SDS and used for promoting or cross- selling new 
products. The IPCS, integrating a rule- based expert system and a fuzzy 
screening technique, can process linguistic and categorical information to 
simulate fashion designers and recommend appropriate fashion product items 
for cross- selling. The proposed systems execute the selling strategies more 
effectively, which improves sales performance in the fashion retail industry.  

   Key words:    information system, multi- criteria decision  making, cross- selling, 
RFID, retailing, fuzzy logic, rule- based expert system.   

    10.1  Introduction 

 The competition in many product markets is becoming keener, as the retail market in 
particular is becoming highly saturated. Retailers well realize the importance of 
retaining existing customers and gaining new ones, since they are the two major 
factors for survival. However, customers tend to be switchers who are likely to switch 
from one retail store to another in response to attractive and competitive offers. The 
competition for customers in mature markets leads to a phenomenon in which each 
retailer becomes a revolving door of acquiring and losing customers. Retailers are 
adopting different strategies to retain customers. These include improving service 
quality, making better business decisions, and identifying customers’ purchasing 
behaviour through analysing transaction data. As a result, different kinds of systems 
have been developed to cater for the needs of these retailers. 

 Some of these systems include geographical information systems (Nasirin 
and Birks, 2003; Tayma and Pol, 1995), inter- organizational information systems 

�� �� �� �� ��



 Intelligent product cross-selling system in fashion retailing 197

©  Woodhead Publishing Limited, 2013

(Lin  et al. , 2003) and data mining systems (Bose and Mahapatra, 2001; Chen 
 et al. , 2008). They enable retailers to make decisions in such areas as replenishment, 
inventory control, and marketing and promotion strategies. Through the use of 
various types of database marketing (Kamakura  et al. , 2003) and data mining 
techniques (Hui and Jha, 2000; Lin and Hong, 2008; Padmanabhan and Tuzhilin, 
1999), customers’ purchasing behaviour can be analysed and new retail business 
knowledge can be discovered. However, one common feature of these systems is 
the reliance on the use of historical transactional data as input. Although 
transactional data are an important source of input, the data are unavailable before 
transactions are made. This chapter, however, demonstrates a research endeavour 
in which, apart from transactional data, customers’ in- store data are collected and 
used for promoting or cross- selling new products to them. 

 Retailers are well aware that, as well as increasing the number of customers, 
they need to increase the profi tability obtained from the customers they already 
have. In other words, increasing the number of transactions per customer may 
lead to growth in terms of both profi ts and customer loyalty. This has led to the use 
of cross- selling  1   and up- selling strategies  2   (Cohen, 2004; Loeb, 2003). To actualize 
these strategies, retailers inevitably have to make use of historical transaction 
data to identify customers’ preference and to rely on the skills of sales staff 
inside the retail stores for successful execution. However, historical data could 
become outdated over time, rendering a poor refl ection of customers’ tastes. In 
addition, human performance in selling may also vary widely from one salesman 
to another. 

 Radio frequency identifi cation (RFID) is a kind of technology for data collection 
by reading tags at a distance without contact. A RFID system consists of three 
major components, namely RFID tags (transponders), an antenna and a RFID 
reader, which is usually interfaced to a computer database where product 
information is held. Tags are attached to product items and, when they are brought 
close to an antenna, the tags are then activated and the product codes are 
transmitted to the RFID reader. By relating the product codes received to the 
product details stored in the computer database, users can identify the products 
and make use of the information for many business and management purposes. 
Many successful RFID applications have been reported over the last few years, 
particularly in production management (Guo  et al. , 2009; Yin  et al. , 2009), supply 
chain management (Angeles, 2005; Holmstrom  et al. , 2010; Sarac  et al. , 2010), 
and logistic and inventory control (Cakici  et al.,  2011; Lefebvre  et al. , 2007; Pei 
and Klabjan, 2010). In order to push business owners to adopt RFID technology, 
RFID cost- benefi t analysis has become a topic of great focus. Many white papers 
have reported the benefi ts of using RFID in such applications as material and 
inventory tracking and logistics in supply chain management (SCM). Jones  et al.  
(2005) reported that a faster and more cost- effective SCM system allowed a UK 
department store to track 3.5 million reusable trays, dollies and cages throughout 
its refrigerated food supply chain, leading to a reduction of almost 80% in the 
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time used to read a stack of multiple trays while increasing data accuracy and 
reliability. Becker  et al.  (2010) proposed a model- based approach for evaluation 
of RFID benefi ts along business processes, which proved to be very helpful in 
improving the individual performance measurement of potential RFID investments 
in an automotive project. Lee and Lee (2010) presented a supply chain RFID 
investment evaluation model to enhance the understanding of RFID value creation 
and measurement, and ways to maximize the value of RFID technology in the 
supply chain. 

 Other application areas, including using the technology to interact with 
customers and improve retail sales, are comparatively fewer, although a smaller 
number of research outputs related to the retail business can still be located. For 
example, Brown and Russell (2007) conducted an exploratory study on the 
adoption of the RFID technology in the South African retail sector and Wamba 
 et al.  (2008) investigated the impact of the RFID technology and the Electronic 
Product Code (EPC) network on mobile B2B eCommerce in the retail industry. 
However, these research endeavours are not in the same realm as this chapter is 
attempting to report. 

 In the fashion retail business, the Prada store in New York seems to be the fi rst 
documented case of using RFID application to interact with in- store customers 
( RFID Journal , 2002). In the store, RFID technology was used in the fi tting 
rooms. This was achieved through using a near- range reader to detect the 
RFID tag on each garment. Therefore garments needed to be located at a specifi c 
location inside the fi tting room so that the detection devices concealed behind 
walls could read the signals from the tags. Then production information, or 
a video clip showing a model on the catwalk wearing the garment, was provided 
to the customers inside the fi tting rooms. The system used in the store seems 
to have been limited to the fi tting room areas, and there was no integration 
with the overall store environment; for example, dressing mirrors located 
inside the store were not integrated into the system. In addition, there is little 
research relating to the content to be displayed through the RFID system inside 
the fi tting room. 

 Much research was found on analysing transactional sales information in the 
retail business, but investigations into the utilization of product information on the 
cross- selling and up- selling activities on the retail shop fl oor, as well as sales 
performance, are limited. Utilizing product information to implement cross- 
selling and up- selling allows customers to be provided with fashion mix- and-
match recommendations, in which two fashion items are matched to present a 
good and attractive aesthetic appearance. Generally, deciding which two fashion 
items can be matched is a subjective judgement by designers. They assess the 
effect of the mix- and-match performance from multiple perspectives, such as 
whether the colours of two fashion items are matched and how the silhouettes of 
two items fi t in together. The procedure of fashion mix- and-match can be modelled 
as a decision- making process, as illustrated in  Fig. 10.1 . 
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 Thus, the procedure of fashion mix- and-match recommendation is a decision- 
making process which involves the matching evaluations of multiple fashion 
attributes (multiple criteria), known as multiple criteria decision  making (MCDM). 

 A variety of methods have been developed to solve MCDM problems, of which 
one of the most commonly used belongs to the classic method that uses mathematical 
functions to assist decision- makers to construct their preferences. The classic 
method includes multi- attribute value theory (MAVT) (Pictet and Bollinger, 2008; 
Simpson, 1996), multi- attribute utility theory (MAUT) (Gass, 2005; Khandelwal 
 et al. , 2006), analytic hierarchy process (AHP) (Gass, 2005; Rohacova and 
Markova, 2009), and so on. MAVT and MAUT are diffi cult to use because the 
utility elicitation process is time- consuming and complex. The AHP is relatively 
easy to use and requires less cognitive skill than MAVT and MAUT. However, it 
cannot accommodate the variety of interactions, dependencies and feedback 
between higher and lower level elements. The expert system is a commonly used 
alternative for MCDM problems (Beynon  et al. , 2001; Tsiporkova and Boeva, 
2006) because it can simulate the performance of the expert and its knowledge 
base contains problem- related expertise. However, these methods generally 
assume that all criteria and their respective weights are expressed in crisp values. 
They cannot deal with problems with uncertain, vague and imprecise information. 
Unfortunately, the decision- making process for fashion mix- and-match involves 
various imprecise variables, such as the matching satisfaction levels of different 
products and the importance level of each attribute. The classic MCDM methods 
and expert systems are thus not appropriate for the fashion mix- and-match problem. 

 The fuzzy set theory introduced by Zadeh (1965) to handle problems involving 
a source of vagueness has been utilized for incorporating imprecise data into the 
decision framework (Benbernou and Warwick, 2007; Tong, 1982). It can be seen 
from  Fig. 10.1  that the fashion mix- and-match problem mainly consists of two 
distinct decision- making phases: attribute evaluation and overall evaluation. Due 

   10.1     The fashion mix- and-match decision- making process of 
fashion designers.     
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to the complexity and fuzziness of these two phases, it is diffi cult to develop a 
precise mathematical model for the fashion mix- and-match. Moreover, some 
attributes of fashion items are categorical, such as colour, type of apparel, pattern, 
and so on. For example, the values for colour are black, red, white, and the like. 
These categorical attributes complicate the modelling of the attribute evaluation 
process by the fashion designers, because no computing method can be used 
directly on two categorical values. Therefore, it is infeasible to apply fuzzy logic 
methods directly to the fashion mix- and-match problem, even though there are 
many fuzzy rules existing in the overall evaluation. The rule- based expert system 
can effectively handle the large number of rules used for evaluating the matching 
degree of each fashion attribute. To handle various imprecise variables, it is 
desirable to combine the rule- based expert system with the fuzzy logic concept for 
fashion mix- and-match purposes. 

 This chapter demonstrates a combined use of RFID technology, expert system 
and fuzzy logic method to perform cross- selling and up- selling, which is 
implemented by two systems presented in this chapter. The fi rst system is the smart 
dressing system (SDS), enabled by RFID technologies, which performs several 
functions including identifying product information, collecting customers’ in- store 
preferences, and offering cross- selling and up- selling (mix- and-match) information. 
The second system is a hybrid intelligent system, called the intelligent product 
cross- selling system (IPCS), developed to match customers’ selections with other 
fashion items for mix- and-match purposes. The SDS is therefore the front end 
which interacts with in- store customers while the IPCS is the back end responsible 
for evaluating and matching fashion items. These systems have been implemented 
in the real- life situation, and their potential and benefi ts are evaluated in this chapter. 

 The remainder of this chapter is organized as follows. Section 10.2 introduces 
the architecture and mechanism of the RFID-enabled SDS. Section 10.3 describes 
the IPCS and explains how to use product attributes of the fashion merchandise to 
generate cross- selling items. Section 10.4 presents an implementation of the two 
systems in a fashion retailing company in Hong Kong. Section 10.5 presents the 
experimental results of evaluating the effectiveness of the system on retail sales 
performance. Section 10.6 concludes the study and proposes further work.  

   10.2  Radio frequency identifi cation (RFID)-enabled 

smart dressing system (SDS) 

 The SDS was developed in order to achieve a more integrated approach in utilizing 
fashion product information for cross- selling and to explore the potential of RFID 
in fashion retailing. The SDS is designed based on the current frequency allocation 
for RFID assigned by The Offi ce of Telecommunication Authority (OFTA) of 
Hong Kong, and the frequency band is 920–925 MHz. 

 The system architecture of the RFID-enabled SDS system is shown in  Fig. 10.2 . 
The system consists of RFID-embedded dressing mirrors, smart fi tting rooms, a 
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sales counter with a PC workstation connected to a server, RFID reader and 
middleware component inside a retail store, a smart dressing server and a product 
database for cross- selling. 

  Figure 10.3 (a) shows a fashion retail shop equipped with the SDS. All fashion 
merchandise in the retail store has an ultra- high frequency RFID tag attached 
( Fig. 10.3 (b)). The dressing mirror and fi tting room are equipped with RFID 
antennas and projection devices. The RFID antennas are connected to RFID readers, 
which are connected to RFID middleware  3   and the smart dressing server, which 
forms an RFID data management platform to collect, fi lter and route raw RFID data 
from individual readers. It avoids network congestion by automatic data fi ltering of 
the vast amount of raw data entering the network. Any useless raw RFID data is 
fi ltered away to ensure that no ‘noisy data’ can enter the network, thus improving 
network effi ciency. The RFID antennas are used to detect RFID tags in front of the 
dressing mirrors and inside the fi tting rooms. When an item is brought in front of a 
dressing mirror or into a fi tting room, the item can be detected and the antenna will 
convey the information to the RFID reader as well as the smart dressing server. 

 The system then delivers cross- selling (mix- and-match) recommendations to 
the customer, using a human- size display next to the dressing mirror ( Fig. 10.3 (c)). 

   10.2     System architecture of RFID-enabled SFS for cross- selling in the 
fashion retail industry.     
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   10.3     (a) A fashion retail shop equipped with SDS. (b) A jacket with a 
smart tag attached.     

If the customer is inside a fi tting room, the recommendations will be displayed 
through touch- screen LCD monitor, which also allows the customer to interact 
with the system for more product information, such as colours, sizes, fabrics, and 
so on ( Fig. 10.3 (d)). If the customer is interested in the recommended items and 
wants to try them on, an intercom system is available to inform the sales staff, 
who will bring the clothes over ( Fig. 10.3 (e)). 
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   10.3     Continued. (c) Smart dressing mirror displaying mix- and-match 
items based on the customer’s selected item. (d) A customer inside the 
smart fi tting room interacting with the system for more product details.     
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 The store counter, being the control centre of the system, can synchronize with 
either the smart mirror or the smart fi tting room system. Using the computer and 
the intercom systems at the store counter, the sales staff can know exactly what 
items are required by the customer inside the fi tting room. The staff can then take 
the matching product items to the customer. In this way, the customer does not 
have the trouble of re- dressing, walking out of the fi tting room, selecting the 
items, walking back and trying on again. 

 The store counter is also equipped with a hand- held scanning system whose 
purpose is to associate a barcode ticket with a smart tag. As many suppliers are not 
RFID enabled, fashion merchandise arriving at a store is only tagged with 
traditional barcode tickets. The hand- held scanning device reads the barcode and 
allows the system to generate a smart tag for an item. When a fashion item is sold 
at the store counter, the smart tag is removed and will be reused for other items.  

   10.3  Intelligent product cross- selling system (IPCS) 

 The smart dressing server involves a front- end sub- system and a back- end sub- 
system. The front- end sub- system, the RFID-enabled Smart Dressing System 
(SDS), is primarily used to interact with customers and allow the salespersons to 
provide service to them. The system can display the product details of selected 
items or recommend new fashion items to go with them through various display 

   10.3     Continued. (e) A member of the sales staff is communicating 
with a customer inside the fi tting room.     
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devices. The back- end sub- system, the Intelligent Product Cross- selling System 
(IPCS), is designed to assist fashion designers or stylists in streamlining the 
process of making the mix- and-match pairs. This is achieved through comparing 
the degree of importance of the characteristics (or attributes) of the fashion items 
with each other. 

 The system is designed to allow the input of the characteristics of the fashion 
merchandise in the form of data, which are stored in the product database. These 
characteristics, such as colour, pattern and product type, defi ned as product 
attributes throughout this chapter, are used to portray the fashion ‘image’. These 
product attributes are identifi ed through interviews and surveys with the fashion 
designers. Only those attributes that are important to fashion mix- and-match are 
identifi ed as the product attributes. Nine product attributes were identifi ed, as 
shown in  Table 10.1 . It should be mentioned that, although the ‘price’ attribute is 
an important factor for the customer in making purchase decisions in fashion 
retailing, price is not an important factor in fashion mix- and-match, and thus all 
nine identifi ed attributes are related to the product features. Each day, the smart 
dressing server receives updated mix- and-match recommendations generated from 
the IPCS. These recommendations are then used for presenting to the customers. 

 The SDS described in Section 10.2 established an environment in which the 
customer can interact easily with the computer system and obtain the fashion mix- 
and-match recommendation generated by the IPCS. The SDS is the foundation for 
cross- selling fashion products and the IPCS is the kernel, which evaluates the 
matching performance of each fashion pair and provides well- matched fashion 
recommendations to customers. 

    Table 10.1     The attributes related to fashion mix- and-match and their level of 
importance  

 Attribute  Description  Degree of 
importance 

 Type  The categories of apparel items, such as skirt, jacket, etc.   EH  
 Colour  The overall harmonization of the combination of colours 

in creating the total look 
  EH  

 Size  The size of apparel   VH  
 Length  The length of apparel to create layers   H  
 Texture  The surface appearance of the materials   H  
 Pattern  The arrangement of design on/in the fabric   M  
 Silhouette  The overall outline or couture of the look in presenting 

the body fi gure 
  H  

 Occasion  The appropriateness of dressing in certain situations or 
conditions, such as formal, casual, etc. 

  VH  

 Trend  The general directions that govern what is in or out of 
the fashion trend 

  H  

   Note: EH, Extremely high; VH, very high; H, high; M, medium.     
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   10.3.1  Overview of the IPCS architecture 

  Figure 10.4  illustrates the architecture of the IPCS. The IPCS is composed of a 
rule- based expert system for matching evaluations of product attributes, and a 
fuzzy screening module for generating fi nal mix- and-match recommendations of 
fashion product items. 

 In the rule- based expert system, the fashion designers’ experience and rules of 
thumb for matching fashion products were captured and programmed. The rule- 
based expert system, including an inference engine, was constructed for evaluating 
the matching performance of each product attribute and the overall performance 
of fashion pairs automatically. Since the experience and rules of fashion designers 
were subjective and involved vague and imprecise information, a fuzzy linguistic 
rating scale was devised to quantify their opinions. A fuzzy screening technique, 
called Fashion Matching Satisfaction Index (FMSI), was used to calculate the 
overall matching performance of each fashion pair. The pairs with the highest 
FMSIs were used for cross- selling to the customers in the shops. The following 
section describes the detailed mechanism of the proposed IPCS.  

   10.4     Architecture of the proposed intelligent product 
cross- selling system.     
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   10.3.2  Intelligent product cross- selling based on rule- based 
expert system and fuzzy screening technique 

 In the IPCS system, there are two phases to evaluate the matching performance of 
paired merchandise: (1) individual attribute evaluation: assessing the matching 
performance of each individual attribute, such as colour, pattern and product type, 
of the paired merchandise (outfi t); and (2) overall evaluation: inferring the overall 
performance of the pair (outfi t) based on the evaluation of all attributes. The two 
phases are implemented by using a rule- based expert system and a fuzzy screening 
technique, respectively. One core component of the system is using linguistic 
rating scales to evaluate coordinated outfi ts, because it is computationally 
complicated to evaluate paired fashion merchandise with precise data. In this 
research, two variables are defi ned as fuzzy linguistic rating scales. One is the 
attribute matching satisfaction index (AMSI), denoted as  S~ , which is defi ned for 
the evaluation of the attribute matching satisfaction degree with respect to each 
product attribute of fashion pairs, such as ‘black’ colour of a jacket matching 
‘grey’ colour of a pair of pants. The other one is the importance index of the 
product attribute denoted as  W~ , which is defi ned as representing the level of 
importance of each individual attribute in the matching decision. Each fuzzy 
rating scale can be represented by a number of linguistic terms, called fuzzy 
numbers. 

 Before the IPCS system was constructed, the two variables  S~  and  W~  were rated 
by fashion designers on a scale of 0 to 10. With this numerical scale,  S~  and  W~  can 
be determined by the optimal fuzzy partition using the heuristic cut and trial 
procedure (Carlsson and Fuller, 1995). Seven fuzzy numbers were used for each 
fuzzy rating scale of  S~  and  W~  and various linguistic terms are defi ned to represent 
the rating scales. The linguistic terms of the two fuzzy rating scales with the 
corresponding fuzzy numbers and membership functions are shown in  Table 10.2 . 

 A questionnaire based on the linguistic rating scale ( Table 10.2 ) was then 
formulated to collect ten fashion designers’ opinions about the level of importance 
of the said nine product attributes (see  Table 10.1 ). Almost all attributes in 

    Table 10.2     Linguistic terms of fuzzy rating scales with fuzzy number representation  

 Linguistic terms of the 
satisfaction degree  S

~
  

 Linguistic terms of the 
level of importance  W  

~
 Approximated value of 
corresponding fuzzy number 

 Perfect ( P  )  Extremely high ( EH  )  10 
 Very good ( VG  )  Very high ( VH  )   9 
 Good ( G  )  High ( H  )   7 
 Fair ( F  )  Medium ( M  )   5 
 Lightly bad ( LB  )  Low ( L )   3 
 Bad ( B  )  Very low ( VL )   1 
 Very bad ( VB  )  None ( N  )   0 
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 Table 10.1  have the importance level of  H  (High) or above except the pattern 
attribute, rated as  M  (Medium). 

 The rule- based expert system, as shown in  Fig. 10.5 , consisting of a knowledge 
acquisition module, an expert knowledge base and an inference engine, is to 
compile the attribute data related to apparel and establish rules to conduct attribute 
evaluation. It has the ability of performing rule extraction, representation and 
inference. The knowledge acquisition module handles the interaction with 
experts, converts the knowledge of experts into rules in the format of symbolic 
representation, and adds or modifi es rules for the expert knowledge base. 
The expert knowledge base is the core component to store the mix- and-
match rules. The inference engine is to emulate the decision- making process 
of fashion designers based on mix- and-match rules stored in the expert 
knowledge base. 

   10.5     Rule- based expert system for evaluating the AMSI of 
each attribute.     
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 The possible values of a product attribute are descriptive words; for example, 
the values for colour are black, red, and the like. In order to capture the matching 
rules, the possible values of each attribute should be identifi ed and enumerated. 
Suppose that a set  A  = { A  1 ,  A  2 , . . .,  A   m  } denoting the  m  attributes of apparel is 
available. All possible values for the  A   i   ( i  = 1, . . .,  m ) are collected and enumerated 
as  A   i   = { A   i 1 ,  A   i 2 , . . .,  A   ib   i  

 }, where  b   i   is the number of the enumerated values for  A   i  . 
Therefore, there are  b   i   × ( b   i   − 1)/2 rules for attribute  A   i  . The number of rules for 

all attributes in sum is   . 

 In the inference engine, the rules of fashion matching performance with respect 
to an AMSI  S~  could be expressed as an IF-THEN rule of the following form.

   IF the value of attribute   A   i    of one fashion item is   A   i 1   AND the value of attribute   A   i   
 of the other fashion item is   A   i 2  , THEN the attribute matching satisfaction index of 
this paired fashion item in terms of this attribute is   S~   k   ( A   i   ),   

 where  A   i 1 ,  A   i 2  are the enumerated values of an attribute,  S~   k   ( A   i   ) is one term drawn 
from  S~  (see  Table 10.2 ), which is the linguistic rating scale for representing the AMSI. 

 After all the rules have been compiled, the inference engine is used for 
evaluating the satisfaction degree of each product attribute. The inference engine 
evaluates the matching performance of one fashion pair based on one individual 
attribute and then aggregates a total matching performance of all nine attributes 
using fuzzy screening technique to calculate the FMSI for each fashion pair. 

 As a large number of possible matches for multiple apparel items exists, 
detailed, consistent and precise evaluations of all possible apparel coordination 
are time- consuming and complicated. Fuzzy screening technique is used fi rst to 
trim down the size of a problem by binding the space of promising alternatives so 
that unsatisfactory alternatives can be removed before the detailed evaluations, 
and then to generate mix- and-match recommendations for customers. For a 
fashion product pair  C   j  , on the condition that the AMSI and the importance level 
of each attribute are given, the FMSI of the fashion pair is calculated by the 
Łukasiewitz implication operator (Carlsson and Fuller, 1995). The detailed 
procedures of fuzzy screening technique are described as follows. 

 Let  C  1 ,  C  2  . . .,  C   n   denote  n  fashion pairs to be evaluated, and each pair has  m  
attributes,  A  1 , . . .,  A   m  , as criteria for calculating FMSI. Based on fashion experts’ 
opinion ( Table 10.2 ), the levels of importance for the attributes  A  1 , . . .,  A   m   are 
determined as follows:

  W~  ( A ) = { W~   A  1  ,  W
~   A  2  , . . .,  W

~   A   m   } [10.1]  

 where  W~   A   j  
  pertains to the set of the linguistic rating scale  W~  = { W~  1 , . . .,  W

~   t  },  W~  1  < 
. . . <  W~   t  . 

 First, for fashion pair  C   i   (1 ≤  i  ≤  n ), utilize the rule- based expert system to 
evaluate the attribute matching satisfaction index, and obtain a collection of  m  
satisfaction degree index corresponding to  m  evaluation criteria, that is:
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  S~   i   ( A ) = { S~   i 1  ( A  1 ),  S
~   i 2  ( A  2 ), . . .,  S

~   im   ( A   m  )} [10.2]  

 where  S~   ij   ( A   j  )(1 ≤  j  ≤  m ) is the matching satisfaction index of attribute  A   j  , which 
pertains to the set of the linguistic rating scale  S~  = { S~  1 , . . .,  S

~   t  },  S~  1  < . . . <  S~   t   
(see  Table 10.2 ). 

 Then, according to the fuzzy screening approach, the FMSI,  χ   i  , of fashion pair 
 C   i   is calculated using the following equation:

  χ   i   =  Min   j   = 1,. . . m   {  W~   A   j    →  S~   ij   ( A   j  )} [10.3]  

 where  Min ( S~   i  ,  S~   k  ) =  S~   i  , if  S~   i   ≤  S~   k  , otherwise  Min ( S~   i  ,  S~   k  ) =  S~   k  .  W~   A   j    →  S~   ij   ( A   j  ) 
is defi ned based on the Łukasiewitz implication operator given by  x  →  y  =  Min 
{1 −  x  +  y ,1}, i.e.

  W~   A   j    →  S~   ij  ( A   j  ) =  R Imp( W~   A   j   ,  S
~   ij   ( A   j  )) =  S~   b ( ij )  [10.4]  

    
[10.5]

 

 where  t  is the number of the linguistic terms,  p (1 ≤  p  ≤  t ) is the index of  W~   A   j  
  in  W~  

and  q (1 ≤  q  ≤  t ) is the index of  S~   ij   ( A   j  ) in  S~ . 
 Finally, after the FMSIs of all fashion pairs have been calculated using the 

above method, screen out the fashion pair for which FMSI,  χ   i  , is equal to or 
greater than the predefi ned minimum satisfaction degree,  S~ *, and recommend it to 
the customer.  

   10.3.3  Validation on the IPCS for mix- and-match 

 To validate the performance of the proposed IPCS system on matching 
recommendations for cross- selling in a real- life environment, 48 fashion items of 
a fashion retailer, including a total of 538 expert rules, were used for experimental 
testing. These samples of fashion items belong to fi ve product types, including 
dress, jacket, skirt, top and trousers. The distribution of apparel items in each 
product type and the potential 829 matching pairs are listed in  Table 10.3 . 

 To validate the performance of the system, another survey was conducted to 
collect the matching performance of these 829 pairs rated by 10 fashion designers. 

    Table 10.3     The number of fashion items in each type and their potential 
matching pairs  

 Total 
samples 

 The number of apparel items belonging to each type  Potential 
matching 
pairs  Dress  Jacket  Skirt  Top  Trousers 

 48  2  11  3  16  16  829 
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We divided the 829 pairs into seven groups (rated using a seven- level scale) on the 
basis of their FMSI produced by the program.  Table 10.4  indicates the results of 
the mix- and-match recommendations generated by the IPCS system. The number 
of pairs in the  P  ( Perfect ) level was zero, which means that the matching rules in 
the expert system for  perfect  are very hard to meet. The numbers of pairs in the 
levels of LB, B and VB were 171 (20.63%), 303 (36.55%) and 205 (24.73%) 
respectively. 

 Each group was assigned to two fashion designers for the evaluation. A detailed 
comparison between the results generated by the proposed system and those 
provided by the fashion designers is summarized in  Table 10.5 . 

 In  Table 10.5 , it can be seen that the lowest percentage of the correct 
recommendations conducted by the system was 81.25 and the overall percentage 
was 94.09, indicating a high level of system accuracy meeting the practical 
requirements of the fashion retailer. 

 It can be seen from  Table 10.6  that the performance of the system is very 
satisfactory. The system could achieve 87.04%, 91.86% and 99.33% accuracy 

    Table 10.4     Fashion matching results generated by IPCS system  

 The FMSI level  Total 

  P    VG    G    F    LB    B    VB  

 Number of pairs  0  54  32  64  171  303  205  829 
 Ratio (%)  0  6.51  3.86  7.72  20.63  36.55  24.73  100 

    Notes: P , Perfect;  VG , Very good;  G , Good;  F , Fair;  LB , Lightly bad;  B , Bad;  VB , Very bad.     

    Table 10.5     Comparison between the result advised by the IPCS system and the 
evaluation result provided by the fashion designers  

 The FMSI level  Total 

  VG    G    F    LB    B    VB  

 Expert system  54  32  64  171  303  205  829 
   Same result   a   45  26  60  160  289  200  780 
 Designers 
   Different result   b    9   6   4   11   14    5   49 
 Correct ratio of the expert 
system (%) 

 83.33  81.25  93.75  93.57   95.38   97.56   94.09 

Notes:     a  Same result  means that the FMSI index of the pair evaluated by the fashion 
designers is same as the results generated by the IPCS system.  

   b  Different result  means that the FMSI index of the pair evaluated by the fashion 
designers is different from the results generated by the IPCS system.  

   P , Perfect;  VG , Very good;  G , Good;  F , Fair;  LB , Lightly bad;  B , Bad;  VB , Very bad.     
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when the minimum level of recommendation performance was set at level  VG ,  G  
and  F  respectively. The numbers of pairs recommended by the fashion designers 
which were not recommended by the proposed system, called ‘missed pairs’, 
were only three, three and one, respectively, at three different screening levels, 
while the number of pairs recommended by the expert system which were not 
recommended by the fashion designers, called ‘extra pairs’, were seven, seven 
and one, respectively at three screening levels. The apparel pairs with very good 
ratings were exported to the product database of the SDS for cross- selling.   

   10.4  Implementation of the RFID-enabled 

SDS and IPCS 

 Based on the operation logic of the system, the layered technique for software 
design was employed (Seiter  et al. , 2000) to develop the system architecture, in 
which there are three layers: user interface layer, application logic layer and data 
layer. The user interface layer receives commands from the users, transfers them 
to the application logic layer and returns results to the users. The application logic 
layer is composed of multiple logic processing functions. The object- oriented 
technique is employed and logic functions are developed module by module. The 
data layer, where there is a database management system using SQL Server, is 
responsible for data reading and writing. 

 Based on the theoretical architectures shown in  Fig. 10.2  and  10.4 , the SDS and 
the IPCS were developed and implemented in a fashion retailing company which 
has nine chain stores in Hong Kong. The product information and the subjective 
evaluation information of fashion items were input into the system via the back- 
end sub- system.  Figure 10.6 (a) and  10.6 (b) show the interfaces of involving the 
product information, that is, attributes or features with the corresponding level of 
importance. Users can use this interface to input product features like colour, 
pattern, silhouette, and so on with their corresponding level of importance, such 
as extremely high, very high, and so on, which should be considered for evaluating 

    Table 10.6     The screening performance of the IPCS system at the screening levels of 
VG, G and F  

 The screening level  S * 

  VG    G    F  

 Designers  Recommended pairs  50  82  150 
 Recommended pairs  54  86  150 

 IPCS System  Correct recommended pairs (%)  47 (87.04)  79 (91.86)  149 (99.33) 
 Missed recommended pairs (%)   3 (5.56)   3 (3.49)    1 (0.67) 
 Extra recommended pairs (%)   7 (12.96)   7 (8.14)    1 (0.67) 

    Notes: VG , Very good;  G , Good;  F , Fair.     
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the matching performance of fashion product items.  Figure 10.6 (c) is the interface 
to store the acquired knowledge and rules of fashion product mix- and-match 
using the fuzzy screening approach described in Section 10.3.2.  Figure 10.6 (d) is 
the interface for the user to input the product attributes of the fashion merchandise 

   10.6     The client interfaces of the intelligent product cross- selling 
system. (a) Determination of attributes and their importance. 
(b) Value enumeration for attributes. (c) Expert knowledge 
acquisition. (d) Product attributes input. (e) Intelligent fashion 
mix- and-match. (f) Display of mix- and-match results.     
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which will be paired for matching performance evaluation. Based on the above 
input parameters, the product items for cross- selling can be generated 
automatically. In  Fig. 10.6 (e), a long vest in brown matched with a pair of pants 
in brown is automatically under evaluation by the system. The matching 
performance result of each attribute, such as colour, length, and so on, as well as 
overall matching performance, is shown in this fi gure.  Figure 10.6 (f) illustrates 
the recommended paired merchandise which can be used for cross- selling. The 
smart dressing server receives the updated mix- and-match recommendations 
generated from the IPCS, and these recommendations are then transmitted to the 
client PC workstations for presenting to the customers on the retail shop fl oor. 

 In  Fig. 10.7 , a pink jacket is selected and brought by a customer to the fi tting 
room. As the jacket has a RFID tag attached, which is identifi ed by the RFID-
enabled SDS, a pair of pants is immediately recommended by the IPCS through a 
LCD monitor. To make the paired apparel more attractive to the customers, the 
fashion retailing company utilizes the IPCS by obtaining the matching result fi rst 
and then arranging for a fashion model to dress up in the recommended pair for a 
photo- shoot.  Figure 10.8  illustrates the mix- and-match recommendations 
generated by the IPCS through the smart fi tting room and smart dressing mirror in 
a fashion chain store in Hong Kong.  Figure 10.9  depicts a recently developed 
dressing mirror which can be movable, such that no renovation is required to 
embed the RFID antennas and accessories in the retail store.  

   10.7     Mix- and-match recommendations in the fi tting room by the 
smart dressing system.     
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   10.8     Smart fi tting room and smart dressing mirror integrated with the 
proposed IPCS in a fashon chain store in Hong Kong. (a) Smart fi tting 
room. (b) Smart dressing mirror.     

   10.5  Evaluation of the RFID-enabled SDS 

 The RFID-enabled SDS was received by the fashion retail sector and developers 
after being publicized by the media, and the system was implemented in two of 
the stores of a fashion retailing company that runs nine chain stores located in 
major shopping malls in Hong Kong. In the stores, the fashion merchandise was 
tagged with RFID, and one ordinary dressing mirror and two out of the four fi tting 
rooms were converted into smart devices using the RFID technology integrated 
with an IPCS for offering mix- and-match recommendations to customers. 

 Although the company reported that there was an improvement in sales of 
about 20% a few months after the installation, it is imperative to understand the 
contribution of the system towards the overall sales. In order to identify the sales 
improvement due to the cross- selling function of the system, three- month 
point- of-sale (POS) data after the installation were collected to evaluate the 
impact of the system on sales performance. As customers were not interviewed or 
asked whether or not the purchase was infl uenced by the system, an alternative 
approach was adopted: POS data were screened and those data recommended by 
the system for mixing and matching the detected items by the antenna within 
30 minutes were counted as a successful application of the system. In  Fig. 10.10 , 
the total sales (ordinary sales and those initiated by the system) of the fi rst three 
months after the installation are shown. The blue curve indicates the weekly 
change in total sales quantity and the pink curve provides the sold items which 
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   10.9     A movable smart dressing mirror.     

were detected within the 30-minute limit. On average, the total sales remain more 
or less the same, but the sales due to the system (pink curve) rise in the last two 
months. This rise is shown more clearly in  Fig. 10.11 ; it illustrates the proportion 
of the total sales due to the cross- selling function embedded in the dressing mirror 
and two fi tting rooms of the system. In  Fig. 10.11 , there are two trend lines 
showing a two- stage rise in the system contributing to the total sales: in the initial 
period (i.e. the fi rst month after system installation) about 11% of the total sales 
were due to the system, while in the last two months this contribution improved to 
over 20%. 
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   10.10     Comparison of the total sales with sales due to the installation 
of the RFID-based IPCS.     

   10.11     Proportion of the total sales due to the RFID-based IPCS.     
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 The difference is due to the training of the sales staff. Although initial training 
was provided to all staff during the installation and the system was allowed to run 
for one month, in on- site observations it was found that few customers utilized the 
system and explored further details of the products, and sales staff were reluctant 
to encourage customers to use the system for cross- selling. It seems that they were 
not confi dent enough to rely on the technology for customer service. Management 
offered further training to familiarize the staff with the potential of the system and 
help them understand that the system was intended to assist their work rather than 
making the staff redundant. There was an obvious sales improvement, in which 
more than 20% of sales were due to the system. 

 As the cross- selling system is embedded in both the dressing mirror and the 
fi tting rooms, it is also important to identify how each contributes to the sales 
individually.  Figure 10.12  illustrates the breakdown of the sales quantities caused 
by the two fi tting rooms and the dressing mirror as a result of the use of IPCS. In 
the fi rst months, it was found that the sales generated by the dressing mirror were 
greater than those due to the fi tting rooms. This is because of the fact that the 
human- sized visual display incorporated into the dressing mirror was more 
impressive to the customers; the cross- selling recommendations were easily 
recognized without the assistance of the sales staff. Unlike the dressing mirror, the 
visual display through LCD monitors in the fi tting rooms was comparatively 
smaller, and customers did not feel compelled to use them if they were not 
encouraged and introduced by the sales staff. 

 After retraining had been provided to the sales staff about the importance of 
letting the customers know the mix- and-match recommendations from the fi tting 

   10.12     Trend of sales quantities due to the two fi tting rooms and the 
dressing mirror with embedded RFID-based IPCS.     
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rooms, the sales based on the fi tting rooms were greater than those based on the 
dressing mirror. It was found that the effectiveness and practicality of the system 
were also determined by the way in which the sales staff made use of the system 
in the cross- selling activities. When the sales staff perceive the system as their 
helping hands and use it effectively, they can recommend customers to try on more 
garments based on their selected items. When the research was carried out, there 
were a total of fi ve dressing mirrors and four fi tting rooms in each store, but the 
system had only been installed in one mirror and two fi tting rooms. It is envisaged 
that more sales could result if all of them were equipped with the proposed system.  

   10.6  Assessing the use of RFID technology in 

fashion retailing 

 The more conventional use of RFID technologies is in the identifi cation of products 
in logistics operations; this research, however, presented the use of RFID in cross- 
selling and up- selling of fashion items. This new approach can bring many benefi ts 
to fashion retailers in terms of business performance and customer services. 

   10.6.1  Early detection of customers’ preference 

 Metropolitan fashion retailers usually know little about their customers in the 
conventional retailing process. This process usually comprises the following 
stages: ‘walk- in’, ‘browse’, ‘fi t’ and ‘go’. Usually the only piece of information a 
fashion retailer can collect from customers is their transaction and credit card 
details before customers ‘go’ out of the stores. With so little information to rely on, 
it is diffi cult for retailers to enhance their customer service/relationship. The SDS 
offers service to customers at the earlier stages of ‘browse’ and ‘fi t’, even before a 
transaction is actualized. The very actions of selecting of one or several garments 
during the ‘browse’ (or selection) stage will have actually ‘revealed’ the preference 
of a customer. The SDS system allows the retailer to meet this immediate demand. 
A customer may be attracted to a style by its colour, fabric texture or the look. By 
the time the customer removes the item from a store rack and brings it to a dressing 
mirror for assessing or fi tting, the mirror detects the items and shows how the style 
is dressed up in a human- sized display; it also recommends styles which can mix 
and match with the one which the customer is holding. Feedback from the stores 
using the system showed that customers bought not only their selected items but 
also the other items displayed and cross- sold on the screen.  

   10.6.2  Enriching customers’ in- store purchase experience 
without changing the fi tting process 

 The SDS system makes the fi tting process more natural because it uses RFID 
technologies composed predominantly of ultra- high frequency (UHF) tags and 
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readers. These enable the detection of the selected items at a distance and it is not 
necessary to bring the clothing item close to any reader. Generally the signals, 
unlike using a barcode system for which the line of sight is required, can be read 
during the try- on process. There is no change in the way in which a customer fi ts 
a piece of clothing, but the new approach allows retailers to have a computerized 
stylist advising their customers to mix and match.  

   10.6.3  Cross- selling and up- selling can be made possible 
using the smart fi tting rooms 

 Customers who use the fi tting rooms have been attracted by their selections (e.g., 
colours, fabric, style, etc.) and they want to determine whether or not they fi t well 
into those outfi ts. Detailed product mix- and-match information together with 
prices and discounts can be offered to the customers at this stage. The smart fi tting 
room is equipped with the same technology as the smart fi tting mirror, but, in 
order to adapt to the small environment of a fi tting room, the human- size display 
is replaced by a smaller interactive LCD touch- screen display (which is about the 
size of a desktop display). Thumbnail fi gures of the clothing items brought inside 
the fi tting room are detected and shown on the screen. When the customer touches 
appropriate fi gures, the system gives further product details, including available 
colours, sizes, prices, and even promotions and discounts. At the same time, the 
screen recommends other styles that can go with the selected item in the same 
way as the smart dressing mirror outside.  

   10.6.4  New fi tting and transaction experience 

 The system synchronizes with the system at the sales counter; staff can serve 
customers with matching clothing which a customer did not take into the fi tting 
room in the fi rst place. The customer inside a fi tting room can avoid the hassle of 
putting on his/her own clothes and looking for the matching items from the store 
racks. In the fi nal transaction stage, fashion retailers could utilize the RFID tags to 
replace barcodes at the till to generate invoices and fi nalize fund transfers. This 
could reduce the time customers wait in a queue for payment.  

   10.6.5  Standardized cross- selling and up- selling approach 

 The output of this research, SDS and IPCS, has enabled a more standardized 
approach in cross- selling and up- selling of fashion: the pre- determined ideas of 
the company’s buyers or designers on how one fashion item matches with another 
or how several items are sold as coordinates can be conveyed to sales staff, who 
are in the fi rst line for offering services, including styling advice, to customers. 
Customers may turn away due to such reasons as poor service or training of the 
sales staff; with the system, it would be possible to ensure that cross- selling and 
up- selling are executed as the original plans.   
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   10.7  Conclusions 

 This chapter has presented the architecture of an intelligent system integrated 
with RFID technology for cross- selling activities in the fashion retail business. 
Two systems have been developed and applied in real- life situations. The fi rst 
system is the Smart Dressing System (SDS), enabled by RFID technologies, 
which performs several functions, including identifying product information, 
collecting customers’ in- store preferences, and offering cross- selling and up- 
selling (mix- and-match) recommendations. The second system is a hybrid 
intelligent system, called IPCS, developed to match customers’ selections with 
other fashion items for mix- and-match purposes. 

 The success of the cross- selling capability of this new dress fi tting system relies 
heavily on the back- end, which is a support incorporating not only the hardware 
but also the management involved in putting the right styles together based on 
fashion design/styling expertise and subsequent modelling and photo- shoots. 
With the collaboration of the case company and fashion design experts in the 
authors’ institution, this research developed the IPCS, which is a system 
incorporating expert knowledge to carry out initial mix- and-match of the items 
before a season starts. The IPCS enables the design/styling team to focus on fi nal 
judging and fi ne- tuning the mix- and-match outcomes, shortening the time needed 
for the initial matching. Utilizing product information to implement cross- selling 
is a multi- criteria decision  making (MCDM) problem. However, the decision- 
making process for fashion mix- and-match involves various imprecise variables, 
such as the matching satisfaction levels of different products and the level of 
importance of each attribute, which cannot be solved directly by the ordinary rule- 
based expert systems that cannot deal with problems with uncertain, vague and 
imprecise information. The attributes of apparel items are categorical but the 
values of the attributes are literal. For example, the values for colour may be 
black, red, white, and the like. With the ‘IF-THEN’ rules base of the inference 
engine, the IPCS, combining fuzzy screening technique, specifi cally handles 
vague and imprecise information in the process of fashion mix- and-match. This 
application of the knowledge- based attribute evaluation expert system provides 
an innovative approach to processing linguistic information for similar decision- 
making problems. 

 After roll- out of the fi rst prototype, further enhancement and commercialization 
have been licensed to developers. This gives room for the researchers of this 
chapter to focus on the back- end development and the intelligence part of the 
system. The future direction will focus on improving the functionalities of the 
IPCS. Currently, it is able to match any selected items with all the available items 
in a store and produce a score/index for each pair. In a real- life situation, 
coordinating several items to create a total look is common; thus an important 
research area is to explore the possibility of enhancing the ability of the inference 
engine to evaluate three or more items together. 

�� �� �� �� ��



222 Optimizing decision making

©  Woodhead Publishing Limited, 2013

 Research can also be extended to incorporate the analysis of consumer buying 
behaviour and business intelligence based on the captured data. Fashion items 
which have been tried on most or least can be identifi ed and the data can be 
compared with the sales of these items for further analysis. The data obtained can 
be used to improve a number of analyses, including customer preferences and 
visual merchandising performance.  
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  10.9  Notes 

   1    Cross- selling refers to selling of additional items to a customer in relation to the 
item(s) that the customer has purchased.  

  2   Up- selling is a process through which a customer is persuaded (usually by a 
salesman) to purchase an upgrade of the item which he/she intends to purchase.  

  3   The middleware is used to allow seamless connections of different kinds of 
antennas and readers produced by different manufacturers.   
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   Abstract:    In the apparel supply chain, a range of key decisions are always 
faced by apparel enterprises. These decisions, including site selection for 
establishing manufacturing plant, production planning and scheduling, line 
balancing, sales forecasting, etc., rely on the experience and subjective 
assessment of management and decision  makers. As the apparel industry 
is characterized by short product life cycles, volatile customer demands 
and tremendous product varieties, such decisions have become more complex. 
This chapter will discuss these key decision points.  

   Key words:    plant location, production planning and scheduling, marker 
planning, cut order planning, spreading, cutting, line balancing, sales 
forecasting, cross- selling and up- selling.   

    1.1  Introduction 

 Apparel manufacturers and retailers in the fashion industry face a range of key 
decisions, including selection of plant locations, production planning and 
scheduling, marker planning, cut order planning, apparel assembly line balancing, 
retail sales forecasting and marketing. Traditionally, such decisions depended on 
the experience and judgement of key staff. However, as the market has shifted to 
short production runs to meet rapidly changing customer demands, and costs have 
been squeezed in favour of just- in-time production methods, these decisions have 
become more complex. At the same time, production has become more automated 
and integrated, allowing greater control of the supply chain. In this chapter, key 
decisions in the apparel supply chain will be discussed.  

   1.2  Selection of plant locations 

 Apparel manufacturers’ direct investment and joint ventures in developing regions 
have grown rapidly in the past few decades. The choice of plant locations for 
foreign direct investment is an important decision. Non- optimized selection can 
adversely affect a plant’s performance in terms of productivity, manufacturing and 
logistics costs. Selection of a proper plant location is thus crucial. In the case of 
establishing overseas plants, apparel manufacturers should consider costs, profi ts 
and other intractable factors, such as social environment, political stability, legality, 
technology, and micro- environmental factors, including customers, competitors 
and suppliers. Most manufacturers have diffi culties in decision  making due to 
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vague and subjective measures, particularly for variables not represented by 
objective values, such as country risk and community facilities. The decision 
of plant locations thus mostly relies on the intuition and assessment of 
manufacturers.  

   1.3  Production scheduling and assembly line 

balancing control 

 The current competitive market environment causes diffi culties in scheduling and 
line balancing control in the modern apparel industry. 

   1.3.1  Production scheduling 

 In today’s apparel industry, fashion products require a signifi cant amount of 
customization due to differences in body measurements, diverse style preferences 
and replacement cycles. Apparel manufacturers are usually given a short 
production lead- time, tight delivery dates and small quantities with frequent style 
changes. To cope with the increasing demand for product customization, the 
quantity of garments per production order tends to be smaller and thus the number 
of production orders is higher. 

 It is necessary for apparel supply chains to be responsive to the ever- changing 
fashion markets by producing smaller jobs in order to provide customers with 
timely and customized products. Because of ever- increasing global market 
competition, apparel manufacturers have to improve their production performance 
continuously to be more competitive. Effective production planning and 
scheduling (PPS) plays a signifi cant role in maximizing resource utilization and 
shortening the production lead time. As PPS decisions mostly rely on production 
planners’  ad hoc  assessment and intuition, they may not be consistent or optimized 
even under similar conditions. All this makes it more diffi cult for manufacturers 
to make effective PPS decisions. 

 In the real- life production environment, various uncertainties often occur, such 
as customer orders and processing time. An estimate not conforming to industrial 
practice can lead to an unsatisfactory scheduling solution. Without considering 
uncertainties, it is diffi cult to produce an optimized production schedule and thus 
hard to achieve optimal performance. For example, if a schedule fails to factor in 
possible future orders, rush orders can disrupt the production of orders which 
have already been scheduled. 

 Some commercial PPS systems only provide a platform for conducting PPS 
arrangements, but cannot automatically provide scientifi c and optimized solutions. 
PPS decisions in the apparel industry still rely heavily on production schedulers’ 
experience, intuition and assessment rather than a scientifi c and systematic 
approach.  
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   1.3.2  Assembly line balancing control 

 The assembly sewing process is the most labour- intensive part of apparel 
manufacturing. The progressive bundle unit system is common in sewing room 
design. Recently, many manufacturers have installed unit production systems as a 
means to improve effi ciency and effectiveness. Assembly involves a set of 
workstations in which a specifi c task of a pre- defi ned sequence is processed. 

 In order to achieve a balanced line before production, sewing line supervisors 
usually assign one or more sewing operatives to each task based on the standard 
time required to complete the task. However, it is diffi cult to achieve a perfectly 
balanced line because the production rate of each workstation is different. 
Imbalance occurs due to various factors, including fl uctuation in operative 
effi ciency, frequent changes of product styles, order size, prior experience and 
unexpected factors, such as absenteeism and machine breakdown. Line balancing 
control is required to smooth away bottlenecks. 

 The balance control of an apparel assembly line relies heavily on the shop- fl oor 
expert’s knowledge, experience and intuition. The effectiveness of a decision 
depends on the subjective and  ad hoc  assessment of production line supervisors. 
Small order size and frequent changes of styles can make the matter even worse 
for optimal production control. With the recent development and adoption of 
real- time shop- fl oor data capture systems, real- time production statistics and 
progress reports can be generated to assist production line supervisors in line 
balancing control and bottleneck elimination. However, their decisions may not 
be consistent even under similar conditions and may thus be non- optimal.   

   1.4  Cutting room 

 The key decision points in the cutting room of apparel manufacture include cut 
order planning, marker planning, and spreading and cutting scheduling. 

   1.4.1  Cut order planning 

 In apparel supply chains, fabric is the single largest contributor to garment costs. 
Approximately 50–60% of manufacturing costs can be attributed to fabric. Apart 
from fabric, labour and factory operation costs have also been continuously 
increasing while selling prices of apparel products have been falling, which 
presents a great challenge to apparel manufacturers to adopt quick response 
strategies to manufacture and deliver apparel products to retailers while 
maximizing fabric utilization rates (i.e. minimizing material costs) and minimizing 
labour and manufacturing costs. 

 Cut order planning (COP) is the fi rst stage in the production workfl ow of a 
typical apparel manufacturing company upon receiving a production order from a 
client (Fig. 1.1). It is the process to determine the number of markers needed, the 
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number of garment sizes in each marker, and the number of fabric plies to be cut 
from each marker. Markers are the output of marker planning, which is the 
operation following COP. Figure 1.2 shows a marker planning process using 
commercial computing to arrange all patterns of component parts of one or more 
garments on a piece of marker paper (Fig. 1.3). The third operation is fabric- 
spreading, in which fabric pieces are superimposed to become a fabric lay on a 
cutting table (Fig. 1.4). The last operation is fabric- cutting. Garment pieces are cut 
out of fabric lays according to the pattern lines of component parts of one or more 

   1.1     Schematic workfl ow of activities of a fabric- cutting department of 
a typical apparel manufacturing company.     
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   1.2     Example of marker paper.     

   1.3     Marker planning process using commercial computing software.     

�� �� �� �� ��



6 Optimizing decision making

©  Woodhead Publishing Limited, 2013

garments on the marker, and then assembled by the sewing department as a 
fi nished garment. 

 COP, the most upstream activity in apparel manufacturing, plays a signifi cant 
role in affecting fabric and manufacturing costs in the cutting department. Based 
on the requirements of customer orders in terms of style, quantity, size and colour, 
it seeks to minimize total production costs by developing cutting orders with 
respect to material, machinery and labour. 

 After COP and marker planning, spreading and cutting are executed in the 
cutting room, and time and costs required for these two operations are determined 
by COPs. A good plan can improve fabric utilization rates. 

 The COP usually begins with a retail order comprising quantities, sizes and 
colours of garments to be manufactured. The following example demonstrates 
how a COP is derived. For simplicity, only quantities and sizes of garments are 
considered. The details of the customer order are as follows: 
         

 Size  Small  Medium  Large 

 Quantity   (in pieces)  300  600  400 

 The constraints on fabric lay dimensions are:

   •   Maximum number of plies for each lay: 75  
  •   Maximum number of garments marked on each marker: 5    

 The maximum number of garments produced per lay is 5 × 75 = 375 pieces and 
the number of garments required by the customers is 300 + 600 + 400 = 1300 
pieces. Therefore, the theoretical minimum number of lays is 1300/375 = 3.47, 
which gives a practical minimum of four lays to cut the order. If the order is cut at 
the lowest cost, the lays need to be as long and deep as possible. One of the 
possible solutions is: 
         

   1.4     Fabric lay composed of fabric plies after spreading.     
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 Small  Small  Small  Small  Small  Lay 1: 60 plies 

 Medium  Medium  Medium  Large  Large  Lay 2: 75 plies 

 Medium  Medium  Medium  Large  Large  Lay 3: 75 plies 

 Medium  Medium  Medium  Large  Large  Lay 4: 50 plies 

 An alternative to lay 1 is to have a 4- garment marker and spread 75 plies, which 
could reduce cutting costs but is rejected on the grounds of fabric costs, since 
there would be 15 more plies and high fabric end loss occurring on both ends of 
each fabric ply (more plies mean greater end loss). This solution demonstrates that 
sizes Medium and Large are in the ratio of 3:2. The marker for lay 2 can also be 
used for lays 3 and 4, thus reducing marker making costs. 

 This example shows that numerous possible COP solutions can be generated. 
The COP becomes more diffi cult when the numbers of garments and sizes 
increase, and can be further complicated when the parameter of colour is 
considered in the plan. In addition, labour is needed to operate spreading and 
cutting machines. As cut- pieces are transported to the sewing room for garment 
assembly, COP needs to consider the fulfi lment of quantities of cut- pieces 
demanded from the downstream sewing room. 

 Current industry approaches to generating the COP range from manual  ad hoc  
procedures by cut order planners to commercial software. However, many apparel 
manufacturers still use rather primitive methods and rely on planners’ expertise 
and assessment to produce plans. Therefore, an optimal COP cannot always be 
guaranteed. Commercial COP software is available for use, but COP heuristics are 
usually kept confi dential by proprietors. Apart from generating a COP with the 
right garment quantity, size and colour, there is little room for minimizing material, 
machine and labour costs.  

   1.4.2  Marker planning 

 In an apparel manufacturing workfl ow, marker planning is a critical operation in 
the cutting room, in which garment pattern pieces of different sizes and styles are 
laid out on a sheet of paper with fi xed width and arbitrary length in order to 
achieve the highest marker effi ciency. The layout is called a  marker  (Fig. 1.2) and 
always contains areas of unusable fabric due to the irregular shapes of pattern 
pieces. Therefore, minimization of fabric wastage is crucial to costs reduction. 
Current automated marker planning systems fall short of human performance by 
5–10% in marker effi ciency. Such ineffective performance, compared with a 
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human expert, makes the adoption of automatic marker planning uneconomical 
because a 0.1% difference in marker effi ciency implies an annual increase of 
millions of dollars in material costs. Most textile and clothing manufacturers thus 
abandon automatic marking and use only interactive approaches to high marker 
effi ciency. Figure 1.3 shows a marker planning process using commercial 
computing to arrange all patterns of component parts of one or more garments on 
a piece of marker paper. Experience and skills are thus the critical factors in 
marker effi ciency. Time, effort and resources are required to train a skilful marker 
planner even when a computerized marker planning system is in place.  

   1.4.3  Spreading and cutting scheduling 

 In an apparel manufacturing workfl ow, spreading and cutting are the two 
operations following COP and marker planning. Effective upstream fabric 
spreading and cutting operations ensure the smoothness of downstream operations, 
such as sewing, fi nishing and packaging, and are therefore important to the overall 
effi ciency of apparel manufacturing and thus the supply chain. 

 Between the late 1960s and the early 1970s, apparel equipment suppliers 
introduced computerized cutting technology. The continuing demands by apparel 
manufacturers for greater accuracy in the cutting room, faster throughput and 
greater cost savings made computerized cutting machines popular in these two 
decades. However, the computerized cutting system may not be managed in the 
most effi cient way. Once a decision is made to install automatic spreading and 
computerized cutting machines, more time and effort must be invested in 
scheduling of spreading and cutting, since the throughput time of spreading and 
cutting operations becomes shorter. Thus, it is signifi cant to have an optimized 
sequence for spreading fabric lays; otherwise, idle time can appear on spreading 
and cutting machines. However, the production schedule is always determined in 
a heuristic way by cutting- room management, who solve scheduling problems in 
such a way that solutions are feasible but not necessarily optimal. In order to 
achieve daily production targets, operators and machines have to work overtime, 
which in turn increases overall production costs. 

 The procedure of a computerized cutting system (Fig. 1.5) is to spread a fabric 
lay on a spreading table and move it to the cutting machine for cutting. Once the 
fabric lay is cut, the cut fabric is moved to a bundling table. The cutting machine 
is then moved laterally from the existing spreading table to another table for 
cutting another fabric lay. In a real- life environment, a computerized cutting 
machine is set up to serve two to four spreading tables, since the cutting time of a 
fabric lay by a computerized cutting machine is less than a quarter to a third of the 
spreading time of the same fabric lay. Since each fabric lay has different quantities 
of plies to be spread and different numbers of garment sizes on the marker, the 
standard spreading time and cutting time vary with each fabric lay and thus the 
progress of each spreading table is different. With the constraint on spreading 
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space of each spreading table, line balancing always happens between spreading 
and cutting. In the absence of a good spreading and cutting schedule, there exists 
a scenario in which many spread fabric lays occupy all spreading tables waiting to 
be cut and there is no more space on spreading tables for another spread. Another 
scenario is that no fabric lay is ready for cutting and thus the cutting machine is 
idle, especially when some large fabric lays with a greater number of fabric plies 
are spread on three spreading tables at the same time. Thus, a good spreading and 
cutting sequence is vital to a smooth production fl ow and machine utilization in 
the cutting room.   

   1.5     Operating procedures of a computerized cutting system.     
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   1.5  Retailing 

 Fashion retailers need to forecast sales accurately as well as expand their customer 
base and increase profi t from existing customers. 

   1.5.1  Fashion sales forecasting 

 Sales forecasting is the foundation for various phases of operation planning. It is 
a signifi cant task in supply chain management under current dynamic market 
demands and thus greatly affects fashion retailers in various ways. Without 
accurate and reliable sales forecasts, operations can only respond retroactively, 
which causes poor production planning, lost orders, inadequate customer services, 
and poorly utilized resources. Recent research has shown that effective sales 
forecasting enables improvement in supply chain performance. Because of 
ever- increasing global competition, sales forecasting plays an increasingly 
prominent role in supply chain management when profi tability and long- term 
viability rely on effective and effi cient sales forecasts. With regard to the 
fast- expanding Chinese market, the approximately 10% growth rate each year 
leads to a great increase in disposable income, which attracts more and more 
fashion retailing companies to enter this potential market, and thus the fashion 
retail industry becomes a blooming business. 

 The fashion retail business is characterized by short product life cycles, volatile 
customer demands and tremendous product varieties. Most fashion items are of 
strong seasonality. Uncertain customer demands in a frequently changing market 
environment and numerous explanatory variables that infl uence fashion sales 
cause an increase in irregularity or randomicity of sales data. Such distinct 
characteristics increase the complexity of sales forecasting in the fashion retail 
industry. For most fashion products, market demand is uncertain until the selling 
season has started. When the actual demand deviates from the forecast, fashion 
retailers may not have time to respond to changes. Stock outages may occur for 
certain styles or sizes of fashion products and thus affect the profi tability for 
fashion retailers. 

 In fact, most fashion retailers still rely on forecasting professionals’ assessment 
and experience for production planning and stocking decisions before the launch 
of their products. And, when these professionals (i.e. fashion buyers) leave, 
their replacements may fail to develop reliable sales forecasts without their 
predecessors’ know- how. Currently, fashion retail enterprises usually make 
sourcing budgets on an annual and/or seasonal basis by forecasting the total 
sales amount of each fashion item. Then fashion buyers determine which items 
need to be purchased or produced in each fashion item category, which consists 
of multiple items with common attributes. In an enterprise, categories are usually 
unchanged, while items in each category frequently change in different selling 
seasons.  
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   1.5.2  Cross- selling and up- selling 

 Today, the competition in fashion retail business is keener than ever. Fashion 
retailers realize the importance of retaining existing customers and gaining new 
ones. However, customers are likely to switch from one fashion brand to another 
in response to attractive and competitive offers. The competition for customers, 
particularly in mature markets, turns retailers into a revolving door of acquiring 
and losing customers. Fashion retailers currently adopt different strategies to 
retain customers, including better service quality, better business decisions, and 
identifying customers’ purchasing behaviour through analysing transaction data. 
Various types of customer relationship management systems using data mining 
techniques have been developed to cater for the needs of these retailers, and 
allegedly enable retailers to make decisions concerning replenishment, inventory 
control, and marketing and promotion strategies. Through the use of data mining 
techniques, customers’ purchasing behaviour can be analysed and new knowledge 
about retail business discovered. However, adoption is still limited, since the 
systems are not tailor- made for the fashion industry with its characteristic short 
cycles of fashion trends, volatile customer demands, and tremendous product and 
style varieties. 

 Fashion retailers are well aware that, in addition to expanding their customer 
base, they need to increase profi tability obtained from their existing customers. It 
is suggested that cross- selling and up- selling strategies can increase the number of 
transactions per customer and consequently lead to growth of profi ts and customer 
loyalty. Cross- selling refers to sales of additional items to a customer in relation 
to items that he has already purchased. Up- selling is a process through which a 
customer is persuaded (usually by a salesman) to purchase an upgrade of his target 
item. To actualize these strategies, retailers inevitably make use of historical 
transaction data to identify customers’ preferences and rely on sales staff for 
successful execution. However, historical data can become outdated and poorly 
refl ect customers’ tastes. Quality of salesmanship also varies widely between 
salesmen. 

 Recently, radio frequency identifi cation (RFID) has emerged as a technology 
for data collection by reading tags from a distance without making contact, and 
thus is a powerful tool to collect customer data. An RFID system consists of three 
major components, namely RFID tags (transponders), an antenna and an RFID 
reader, and is usually interfaced to a computer database where product information 
is stored. Tags are attached to products and activated when the products are 
brought close to an antenna, and product codes are transmitted to the RFID reader. 
By relating received product codes to product details stored in the computer 
database, users can identify products and make use of the information for many 
business and management purposes. 

 In 2002, the New York Prada became the fi rst documented RFID user to interact 
with in- store customers. The RFID technology was used in the fi tting rooms by 
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using a near- range reader to detect the RFID tag on each garment. The garments 
were located at a specifi c location inside the fi tting room so that the detection 
devices, concealed behind walls, could read the signals from the tags. Then 
production information or a video clip showing a model wearing the garment on 
the catwalk was provided to customers inside the fi tting rooms.           
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